def mepi(trange=['2017-03-27', '2017-03-28'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False): """ This function loads data from the MEP-i experiment from the Arase mission Parameters: trange : list of str time range of interest [starttime, endtime] with the format 'YYYY-MM-DD','YYYY-MM-DD'] or to specify more or less than a day ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss'] datatype: str Data type; Valid options: level: str Data level; Valid options: suffix: str The tplot variable names will be given this suffix. By default, no suffix is added. get_support_data: bool Data with an attribute "VAR_TYPE" with a value of "support_data" will be loaded into tplot. By default, only loads in data with a "VAR_TYPE" attribute of "data". varformat: str The file variable formats to load into tplot. Wildcard character "*" is accepted. By default, all variables are loaded in. downloadonly: bool Set this flag to download the CDF files, but not load them into tplot variables notplot: bool Return the data in hash tables instead of creating tplot variables no_update: bool If set, only load data from your local cache time_clip: bool Time clip the variables to exactly the range specified in the trange keyword Returns: List of tplot variables created. """ return load(instrument='mepi', trange=trange, level=level, datatype=datatype, suffix=suffix, get_support_data=get_support_data, varformat=varformat, downloadonly=downloadonly, notplot=notplot, time_clip=time_clip, no_update=no_update, uname=uname, passwd=passwd)
def mgf(trange=['2017-03-27', '2017-03-28'], datatype='8sec', level='l2', suffix='', get_support_data=False, varformat=None, downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False): """ This function loads data from the MGF experiment from the Arase mission Parameters: trange : list of str time range of interest [starttime, endtime] with the format 'YYYY-MM-DD','YYYY-MM-DD'] or to specify more or less than a day ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss'] datatype: str Data type; Valid options: level: str Data level; Valid options: suffix: str The tplot variable names will be given this suffix. By default, no suffix is added. get_support_data: bool Data with an attribute "VAR_TYPE" with a value of "support_data" will be loaded into tplot. By default, only loads in data with a "VAR_TYPE" attribute of "data". varformat: str The file variable formats to load into tplot. Wildcard character "*" is accepted. By default, all variables are loaded in. downloadonly: bool Set this flag to download the CDF files, but not load them into tplot variables notplot: bool Return the data in hash tables instead of creating tplot variables no_update: bool If set, only load data from your local cache time_clip: bool Time clip the variables to exactly the range specified in the trange keyword Returns: List of tplot variables created. """ if datatype == '8s' or datatype == '8': datatype = '8sec' elif datatype == '64': datatype = '64hz' elif datatype == '128': datatype = '128hz' elif datatype == '256': datatype = '256hz' loaded_data = load(instrument='mgf', trange=trange, level=level, datatype=datatype, suffix=suffix, get_support_data=get_support_data, varformat=varformat, downloadonly=downloadonly, notplot=notplot, time_clip=time_clip, no_update=no_update, uname=uname, passwd=passwd) if loaded_data == None or loaded_data == [] or notplot or downloadonly: return loaded_data clip('erg_mgf_' + level + '_mag_' + datatype + '_dsi' + suffix, -1e+6, 1e6) clip('erg_mgf_' + level + '_mag_' + datatype + '_gse' + suffix, -1e+6, 1e6) clip('erg_mgf_' + level + '_mag_' + datatype + '_gsm' + suffix, -1e+6, 1e6) clip('erg_mgf_' + level + '_mag_' + datatype + '_sm' + suffix, -1e+6, 1e6) # set yrange times, bdata = get_data('erg_mgf_' + level + '_mag_' + datatype + '_dsi' + suffix) ylim('erg_mgf_' + level + '_mag_' + datatype + '_dsi' + suffix, np.nanmin(bdata), np.nanmax(bdata)) times, bdata = get_data('erg_mgf_' + level + '_mag_' + datatype + '_gse' + suffix) ylim('erg_mgf_' + level + '_mag_' + datatype + '_gse' + suffix, np.nanmin(bdata), np.nanmax(bdata)) times, bdata = get_data('erg_mgf_' + level + '_mag_' + datatype + '_gsm' + suffix) ylim('erg_mgf_' + level + '_mag_' + datatype + '_gsm' + suffix, np.nanmin(bdata), np.nanmax(bdata)) times, bdata = get_data('erg_mgf_' + level + '_mag_' + datatype + '_sm' + suffix) ylim('erg_mgf_' + level + '_mag_' + datatype + '_sm' + suffix, np.nanmin(bdata), np.nanmax(bdata)) # set labels options('erg_mgf_' + level + '_mag_' + datatype + '_dsi' + suffix, 'legend_names', ['Bx', 'By', 'Bz']) options('erg_mgf_' + level + '_mag_' + datatype + '_gse' + suffix, 'legend_names', ['Bx', 'By', 'Bz']) options('erg_mgf_' + level + '_mag_' + datatype + '_gsm' + suffix, 'legend_names', ['Bx', 'By', 'Bz']) options('erg_mgf_' + level + '_mag_' + datatype + '_sm' + suffix, 'legend_names', ['Bx', 'By', 'Bz']) # set color of the labels options('erg_mgf_' + level + '_mag_' + datatype + '_dsi' + suffix, 'Color', ['b', 'g', 'r']) options('erg_mgf_' + level + '_mag_' + datatype + '_gse' + suffix, 'Color', ['b', 'g', 'r']) options('erg_mgf_' + level + '_mag_' + datatype + '_gsm' + suffix, 'Color', ['b', 'g', 'r']) options('erg_mgf_' + level + '_mag_' + datatype + '_sm' + suffix, 'Color', ['b', 'g', 'r']) return loaded_data