def test_PPI(data, wvl, mask, path): print('Testing PPI') ppi = eea.PPI() # The format of the data is always (m x n x p), # for each class interface # the format of U is always (N x p) pr = profile() U = ppi.extract(data, 4, normalize=True) #U = ppi.extract(data, 'string', normalize=True) #U = ppi.extract(data, 4, normalize=None) stat(pr) print(' End members indexes:', ppi.get_idx()) ppi.plot(path, axes=wvl, suffix='test1') #ppi.plot(path, axes=1.0, suffix='test1') ppi.plot(path, suffix='test2') U = U[[0, 1], :] test_amap(data, U, 'PPI', path, mask, amaps='NNLS')
def ppi(data, N): #N is the # of endmembers you want to find data = data.reshape(1, data.shape[0], data.shape[1]) #data = data.reshape(data.shape[1], data.shape[0]) #==================================================== #Ae,indice,Yp = VCA.vca(data.transpose(), 3) #endmembers = Ae.transpose() #==================================================== ppi = eea.PPI() endmembers = ppi.extract(M=data, q=N) centroid_smooth = [] for centroid in endmembers: x = np.array(list(range(len(centroid)))) y = np.array(centroid) p30 = np.poly1d(np.polyfit(x, y, 10)) centroid_smooth.append(p30(x) / max(p30(x))) centroid_smooth_df = pd.DataFrame(centroid_smooth) centroid_smooth_df.to_csv('../data/PPI_estimations.csv', header=None, index=False)
def main(): try: import pysptools.eea as eea except ImportError: gs.fatal(_("Cannot import pysptools \ (https://pypi.python.org/pypi/pysptools) library." " Please install it (pip install pysptools)" " or ensure that it is on path" " (use PYTHONPATH variable).")) try: # sklearn is a dependency of used pysptools functionality import sklearn except ImportError: gs.fatal(_("Cannot import sklearn \ (https://pypi.python.org/pypi/scikit-learn) library." " Please install it (pip install scikit-learn)" " or ensure that it is on path" " (use PYTHONPATH variable).")) try: from cvxopt import solvers, matrix except ImportError: gs.fatal(_("Cannot import cvxopt \ (https://pypi.python.org/pypi/cvxopt) library." " Please install it (pip install cvxopt)" " or ensure that it is on path" " (use PYTHONPATH variable).")) # Parse input options input = options['input'] output = options['output'] prefix = options['prefix'] endmember_n = int(options['endmember_n']) endmembers = options['endmembers'] if options['maxit']: maxit = options['maxit'] else: maxit = 0 extraction_method = options['extraction_method'] unmixing_method = options['unmixing_method'] atgp_init = True if not flags['n'] else False # List maps in imagery group try: maps = gs.read_command('i.group', flags='g', group=input, quiet=True).rstrip('\n').split('\n') except: pass # Validate input # q and maxit can be None according to manual, but does not work in current pysptools version if endmember_n <= 0: gs.fatal('Number of endmembers has to be > 0') """if (extraction_method == 'PPI' or extraction_method == 'NFINDR'): gs.fatal('Extraction methods PPI and NFINDR require endmember_n >= 2') endmember_n = None""" if maxit <= 0: maxit = 3 * len(maps) if endmember_n > len(maps) + 1: gs.warning('More endmembers ({}) requested than bands in \ input imagery group ({})'.format(endmember_n, len(maps))) if extraction_method != 'PPI': gs.fatal('Only PPI method can extract more endmembers than number \ of bands in the imagery group') if not atgp_init and extraction_method != 'NFINDR': gs.verbose('ATGP is only taken into account in \ NFINDR extraction method...') # Get metainformation from input bands band_types = {} img = None n = 0 gs.verbose('Reading imagery group...') for m in maps: map = m.split('@') # Build numpy stack from imagery group raster = r.raster2numpy(map[0], mapset=map[1]) if raster == np.float64: raster = float32(raster) gs.warning('{} is of type Float64.\ Float64 is currently not supported.\ Reducing precision to Float32'.format(raster)) # Determine map type band_types[map[0]] = get_rastertype(raster) # Create cube and mask from GRASS internal NoData value if n == 0: img = raster # Create mask from GRASS internal NoData value mask = mask_rasternd(raster) else: img = np.dstack((img, raster)) mask = np.logical_and((mask_rasternd(raster)), mask) n = n + 1 # Read a mask if present and give waringing if not # Note that otherwise NoData is read as values gs.verbose('Checking for MASK...') try: MASK = r.raster2numpy('MASK', mapset=getenv('MAPSET')) == 1 mask = np.logical_and(MASK, mask) MASK = None except: pass if extraction_method == 'NFINDR': # Extract endmembers from valid pixels using NFINDR function from pysptools gs.verbose('Extracting endmembers using NFINDR...') nfindr = eea.NFINDR() E = nfindr.extract(img, endmember_n, maxit=maxit, normalize=False, ATGP_init=atgp_init, mask=mask) elif extraction_method == 'PPI': # Extract endmembers from valid pixels using PPI function from pysptools gs.verbose('Extracting endmembers using PPI...') ppi = eea.PPI() E = ppi.extract(img, endmember_n, numSkewers=10000, normalize=False, mask=mask) elif extraction_method == 'FIPPI': # Extract endmembers from valid pixels using FIPPI function from pysptools gs.verbose('Extracting endmembers using FIPPI...') fippi = eea.FIPPI() # q and maxit can be None according to manual, but does not work """if not maxit and not endmember_n: E = fippi.extract(img, q=None, normalize=False, mask=mask) if not maxit: E = fippi.extract(img, q=endmember_n, normalize=False, mask=mask) if not endmember_n: E = fippi.extract(img, q=int(), maxit=maxit, normalize=False, mask=mask) else: E = fippi.extract(img, q=endmember_n, maxit=maxit, normalize=False, mask=mask)""" E = fippi.extract(img, q=endmember_n, maxit=maxit, normalize=False, mask=mask) # Write output file in format required for i.spec.unmix addon if output: gs.verbose('Writing spectra file...') n = 0 with open(output, 'w') as o: o.write('# Channels: {}\n'.format('\t'.join(band_types.keys()))) o.write('# Wrote {} spectra line wise.\n#\n'.format(endmember_n)) o.write('Matrix: {0} by {1}\n'.format(endmember_n, len(maps))) for e in E: o.write('row{0}: {1}\n'.format(n, '\t'.join([str(i) for i in e]))) n = n + 1 # Write vector map with endmember information if requested if endmembers: gs.verbose('Writing vector map with endmembers...') from grass.pygrass import utils as u from grass.pygrass.gis.region import Region from grass.pygrass.vector import Vector from grass.pygrass.vector import VectorTopo from grass.pygrass.vector.geometry import Point # Build attribute table # Deinfe columns for attribute table cols = [(u'cat', 'INTEGER PRIMARY KEY')] for b in band_types.keys(): cols.append((b.replace('.','_'), band_types[b])) # Get region information reg = Region() # Create vector map new = Vector(endmembers) new.open('w', tab_name=endmembers, tab_cols=cols) cat = 1 for e in E: # Get indices idx = np.where((img[:,:]==e).all(-1)) # Numpy array is ordered rows, columns (y,x) if len(idx[0]) == 0 or len(idx[1]) == 0: gs.warning('Could not compute coordinated for endmember {}. \ Please consider rescaling your data to integer'.format(cat)) cat = cat + 1 continue coords = u.pixel2coor((idx[1][0], idx[0][0]), reg) point = Point(coords[1] + reg.ewres / 2.0, coords[0] - reg.nsres / 2.0) # Get attributes n = 0 attr = [] for b in band_types.keys(): if band_types[b] == u'INTEGER': attr.append(int(e[n])) else: attr.append(float(e[n])) n = n + 1 # Write geometry with attributes new.write(point, cat=cat, attrs=tuple(attr)) cat = cat + 1 # Close vector map new.table.conn.commit() new.close(build=True) if prefix: # Run spectral unmixing import pysptools.abundance_maps as amaps if unmixing_method == 'FCLS': fcls = amaps.FCLS() result = fcls.map(img, E, normalize=False, mask=mask) elif unmixing_method == 'NNLS': nnls = amaps.NNLS() result = nnls.map(img, E, normalize=False, mask=mask) elif unmixing_method == 'UCLS': ucls = amaps.UCLS() result = ucls.map(img, E, normalize=False, mask=mask) # Write results for l in range(endmember_n): rastname = '{0}_{1}'.format(prefix, l + 1) r.numpy2raster(result[:,:,l], 'FCELL', rastname)