예제 #1
0
def test_field_basic():
    f = Field.create_generic('f', spatial_dimensions=2)
    assert FieldType.is_generic(f)
    assert f['E'] == f[1, 0]
    assert f['N'] == f[0, 1]
    assert '_' in f.center._latex('dummy')

    f = Field.create_fixed_size('f', (10, 10),
                                strides=(80, 8),
                                dtype=np.float64)
    assert f.spatial_strides == (10, 1)
    assert f.index_strides == ()
    assert f.center_vector == sp.Matrix([f.center])

    f = Field.create_fixed_size('f', (8, 8, 2, 2), index_dimensions=2)
    assert f.center_vector == sp.Matrix([[f(0, 0), f(0, 1)],
                                         [f(1, 0), f(1, 1)]])
    field_access = f[1, 1]
    assert field_access.nr_of_coordinates == 2
    assert field_access.offset_name == 'NE'
    neighbor = field_access.neighbor(coord_id=0, offset=-2)
    assert neighbor.offsets == (-1, 1)
    assert '_' in neighbor._latex('dummy')

    f = Field.create_generic('f', spatial_dimensions=5, index_dimensions=2)
    field_access = f[1, -1, 2, -3, 0](1, 0)
    assert field_access.offsets == (1, -1, 2, -3, 0)
    assert field_access.index == (1, 0)
예제 #2
0
def create_lb_update_rule(collision_rule=None, lbm_config=None, lbm_optimisation=None, config=None,
                          optimization=None, **kwargs):
    """Creates an update rule (list of Assignments) for a LB method that describe a full sweep"""
    lbm_config, lbm_optimisation, config = update_with_default_parameters(kwargs, optimization,
                                                                          lbm_config, lbm_optimisation, config)

    if lbm_config.collision_rule is not None:
        collision_rule = lbm_config.collision_rule

    if collision_rule is None:
        collision_rule = create_lb_collision_rule(lbm_config.lb_method, lbm_config=lbm_config,
                                                  lbm_optimisation=lbm_optimisation,
                                                  config=config)

    lb_method = collision_rule.method

    field_data_type = config.data_type
    q = collision_rule.method.stencil.Q

    if lbm_optimisation.symbolic_field is not None:
        src_field = lbm_optimisation.symbolic_field
    elif lbm_optimisation.field_size:
        field_size = tuple([s + 2 for s in lbm_optimisation.field_size] + [q])
        src_field = Field.create_fixed_size(lbm_config.field_name, field_size, index_dimensions=1,
                                            layout=lbm_optimisation.field_layout, dtype=field_data_type)
    else:
        src_field = Field.create_generic(lbm_config.field_name, spatial_dimensions=collision_rule.method.dim,
                                         index_shape=(q,), layout=lbm_optimisation.field_layout, dtype=field_data_type)

    if lbm_optimisation.symbolic_temporary_field is not None:
        dst_field = lbm_optimisation.symbolic_temporary_field
    else:
        dst_field = src_field.new_field_with_different_name(lbm_config.temporary_field_name)

    kernel_type = lbm_config.kernel_type
    if kernel_type == 'stream_pull_only':
        return create_stream_pull_with_output_kernel(lb_method, src_field, dst_field, lbm_config.output)
    else:
        if kernel_type == 'default_stream_collide':
            if lbm_config.streaming_pattern == 'pull' and any(lbm_optimisation.builtin_periodicity):
                accessor = PeriodicTwoFieldsAccessor(lbm_optimisation.builtin_periodicity, ghost_layers=1)
            else:
                accessor = get_accessor(lbm_config.streaming_pattern, lbm_config.timestep)
        elif kernel_type == 'collide_only':
            accessor = CollideOnlyInplaceAccessor
        elif isinstance(kernel_type, PdfFieldAccessor):
            accessor = kernel_type
        else:
            raise ValueError("Invalid value of parameter 'kernel_type'", lbm_config.kernel_type)
        return create_lbm_kernel(collision_rule, src_field, dst_field, accessor)
예제 #3
0
def compile_macroscopic_values_getter(lb_method,
                                      output_quantities,
                                      pdf_arr=None,
                                      ghost_layers=1,
                                      iteration_slice=None,
                                      field_layout='numpy',
                                      target=Target.CPU,
                                      streaming_pattern='pull',
                                      previous_timestep=Timestep.BOTH):
    """
    Create kernel to compute macroscopic value(s) from a pdf field (e.g. density or velocity)

    Args:
        lb_method: instance of :class:`lbmpy.methods.AbstractLbMethod`
        output_quantities: sequence of quantities to compute e.g. ['density', 'velocity']
        pdf_arr: optional numpy array for pdf field - used to get optimal loop structure for kernel
        ghost_layers: a sequence of pairs for each coordinate with lower and upper nr of ghost layers
                      that should be excluded from the iteration. If None, the number of ghost layers 
                      is determined automatically and assumed to be equal for all dimensions.        
        iteration_slice: if not None, iteration is done only over this slice of the field
        field_layout: layout for output field, also used for pdf field if pdf_arr is not given
        target: `Target.CPU` or `Target.GPU`
        previous_step_accessor: The accessor used by the streaming pattern of the previous timestep

    Returns:
        a function to compute macroscopic values:
        - pdf_array
        - keyword arguments from name of conserved quantity (as in output_quantities) to numpy field
    """
    if not (isinstance(output_quantities, list)
            or isinstance(output_quantities, tuple)):
        output_quantities = [output_quantities]

    cqc = lb_method.conserved_quantity_computation
    unknown_quantities = [
        oq for oq in output_quantities if oq not in cqc.conserved_quantities
    ]
    if unknown_quantities:
        raise ValueError(
            "No such conserved quantity: %s, conserved quantities are %s" %
            (str(unknown_quantities), str(cqc.conserved_quantities.keys())))

    if pdf_arr is None:
        pdf_field = Field.create_generic('pdfs',
                                         lb_method.dim,
                                         index_dimensions=1,
                                         layout=field_layout)
    else:
        pdf_field = Field.create_from_numpy_array('pdfs',
                                                  pdf_arr,
                                                  index_dimensions=1)

    output_mapping = {}
    for output_quantity in output_quantities:
        number_of_elements = cqc.conserved_quantities[output_quantity]
        assert number_of_elements >= 1

        ind_dims = 0 if number_of_elements <= 1 else 1
        if pdf_arr is None:
            output_field = Field.create_generic(output_quantity,
                                                lb_method.dim,
                                                layout=field_layout,
                                                index_dimensions=ind_dims)
        else:
            output_field_shape = pdf_arr.shape[:-1]
            if ind_dims > 0:
                output_field_shape += (number_of_elements, )
                field_layout = get_layout_of_array(pdf_arr)
            else:
                field_layout = get_layout_of_array(
                    pdf_arr, index_dimension_ids=[len(pdf_field.shape) - 1])
            output_field = Field.create_fixed_size(output_quantity,
                                                   output_field_shape,
                                                   ind_dims, pdf_arr.dtype,
                                                   field_layout)

        output_mapping[output_quantity] = [
            output_field(i) for i in range(number_of_elements)
        ]
        if len(output_mapping[output_quantity]) == 1:
            output_mapping[output_quantity] = output_mapping[output_quantity][
                0]

    stencil = lb_method.stencil
    previous_step_accessor = get_accessor(streaming_pattern, previous_timestep)
    pdf_symbols = previous_step_accessor.write(pdf_field, stencil)

    eqs = cqc.output_equations_from_pdfs(pdf_symbols,
                                         output_mapping).all_assignments

    if target == Target.CPU:
        import pystencils.cpu as cpu
        kernel = cpu.make_python_function(
            cpu.create_kernel(eqs,
                              ghost_layers=ghost_layers,
                              iteration_slice=iteration_slice))
    elif target == Target.GPU:
        import pystencils.gpucuda as gpu
        kernel = gpu.make_python_function(
            gpu.create_cuda_kernel(eqs,
                                   ghost_layers=ghost_layers,
                                   iteration_slice=iteration_slice))
    else:
        raise ValueError(
            "Unknown target '%s'. Possible targets are `Target.CPU` and `Target.GPU`"
            % (target, ))

    def getter(pdfs, **kwargs):
        if pdf_arr is not None:
            assert pdfs.shape == pdf_arr.shape and pdfs.strides == pdf_arr.strides, \
                "Pdf array not matching blueprint which was used to compile" + str(pdfs.shape) + str(pdf_arr.shape)
        if not set(output_quantities).issubset(kwargs.keys()):
            raise ValueError(
                "You have to specify the output field for each of the following quantities: %s"
                % (str(output_quantities), ))
        kernel(pdfs=pdfs, **kwargs)

    return getter
예제 #4
0
def test_error_handling():
    struct_dtype = np.dtype([('a', np.int32), ('b', np.float64),
                             ('c', np.uint32)])
    Field.create_generic('f',
                         spatial_dimensions=2,
                         index_dimensions=0,
                         dtype=struct_dtype)
    with pytest.raises(ValueError) as e:
        Field.create_generic('f',
                             spatial_dimensions=2,
                             index_dimensions=1,
                             dtype=struct_dtype)
    assert 'index dimension' in str(e.value)

    arr = np.array([[1, 2.0, 3], [1, 2.0, 3]], dtype=struct_dtype)
    Field.create_from_numpy_array('f', arr, index_dimensions=0)
    with pytest.raises(ValueError) as e:
        Field.create_from_numpy_array('f', arr, index_dimensions=1)
    assert 'Structured arrays' in str(e.value)

    arr = np.zeros([3, 3, 3])
    Field.create_from_numpy_array('f', arr, index_dimensions=2)
    with pytest.raises(ValueError) as e:
        Field.create_from_numpy_array('f', arr, index_dimensions=3)
    assert 'Too many' in str(e.value)

    Field.create_fixed_size('f', (3, 2, 4),
                            index_dimensions=0,
                            dtype=struct_dtype,
                            layout='reverse_numpy')
    with pytest.raises(ValueError) as e:
        Field.create_fixed_size('f', (3, 2, 4),
                                index_dimensions=1,
                                dtype=struct_dtype,
                                layout='reverse_numpy')
    assert 'Structured arrays' in str(e.value)

    f = Field.create_fixed_size('f', (10, 10))
    with pytest.raises(ValueError) as e:
        f[1]
    assert 'Wrong number of spatial indices' in str(e.value)

    f = Field.create_generic('f', spatial_dimensions=2, index_shape=(3, ))
    with pytest.raises(ValueError) as e:
        f(3)
    assert 'out of bounds' in str(e.value)

    f = Field.create_fixed_size('f', (10, 10, 3, 4), index_dimensions=2)
    with pytest.raises(ValueError) as e:
        f(3, 0)
    assert 'out of bounds' in str(e.value)

    with pytest.raises(ValueError) as e:
        f(1, 0)(1, 0)
    assert 'Indexing an already indexed' in str(e.value)

    with pytest.raises(ValueError) as e:
        f(1)
    assert 'Wrong number of indices' in str(e.value)

    with pytest.raises(ValueError) as e:
        Field.create_generic('f', spatial_dimensions=2, layout='wrong')
    assert 'Unknown layout descriptor' in str(e.value)

    assert layout_string_to_tuple('fzyx', dim=4) == (3, 2, 1, 0)
    with pytest.raises(ValueError) as e:
        layout_string_to_tuple('wrong', dim=4)
    assert 'Unknown layout descriptor' in str(e.value)