def __init__(self): # Network configuration self.config = yaml.load(open(load_config("epsilon"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) self.config["binary"] = load_binary(self.config["binary"]) # Dry weather TSS loading, measured at the outlet of the network self._performormance_threshold = 1.075 # Kg/sec # Create the env based on the config file self.env = environment(self.config, ctrl=True, binary=self.config["binary"]) # Create an object for storing data self.data_log = { "performance_measure": [], "loading": {}, "pollutantL": {}, "flow": {}, "flooding": {}, } # Data logger for storing _performormance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("zeta"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) self.penalty_weight = { "T1": 1000, "T2": 5000, "T3": 5000, "T4": 5000, "T5": 5000, "T6": 10000 } # Create an object for storing the data points self.data_log = { "performance_measure": [], "simulation_time": [], "flow": {}, "flooding": {}, "depthN": {}, } # Log the initial simulation time self.data_log["simulation_time"].append( self.env.sim._model.getCurrentSimulationTime()) # Data logger for storing _performance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("delta"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) self.threshold = 12.0 self.depth_thresholds = { "basin_C": (5.7, 2.21, 3.8, 3.28), "basin_S": (6.55, 9.5), "basin_N1": (5.92, 2.11, 5.8, 5.2), "basin_N2": (6.59, 4.04, 5.04, 4.44), "basin_N3": (11.99, 5.28, 5.92, 5.32), } # Additional penalty definition self.max_penalty = 10**6 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = { "performance_measure": [], "depthN": {}, "flow": {}, "flooding": {}, } # Data logger for storing _performance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = { "swmm_input": load_network("theta"), "states": [("P1", "depthN"), ("P2", "depthN")], "action_space": ["1", "2"], "performance_targets": [ ("8", "flow"), ("P1", "flooding"), ("P2", "flooding"), ], } self.threshold = 0.5 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = {"performance_measure": [], "flow": {}, "flooding": {}} # Data logger for storing _performormance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("theta"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) self.threshold = 0.5 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = {"performance_measure": [], "flow": {}, "flooding": {}} # Data logger for storing _performance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("gamma"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) # Common threhold for the network, can be done independently self._performormance_threshold = 4.0 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = { "performance_measure": [], "flow": {}, "flooding": {}, "depthN": {}, "simulation_time": [], } # Data logger for storing _performormance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = { "swmm_input": load_network("gamma"), "states": [ ("1", "depthN"), ("2", "depthN"), ("3", "depthN"), ("4", "depthN"), ("5", "depthN"), ("6", "depthN"), ("7", "depthN"), ("8", "depthN"), ("9", "depthN"), ("10", "depthN"), ("11", "depthN"), ], "action_space": [ "O1", "O2", "O3", "O4", "O5", "O6", "O7", "O8", "O9", "O10", "O11", ], "performance_targets": [ ("O1", "flow"), ("O2", "flow"), ("O3", "flow"), ("O4", "flow"), ("O5", "flow"), ("O6", "flow"), ("O7", "flow"), ("O8", "flow"), ("O9", "flow"), ("O10", "flow"), ("O11", "flow"), ("1", "flooding"), ("2", "flooding"), ("3", "flooding"), ("4", "flooding"), ("5", "flooding"), ("6", "flooding"), ("7", "flooding"), ("8", "flooding"), ("9", "flooding"), ("10", "flooding"), ("11", "flooding"), ], } # Common threhold for the network, can be done independently self._performormance_threshold = 4.0 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = {"performance_measure": [], "flow": {}, "flooding": {}} # Data logger for storing _performormance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []