def test_psi_continuous(): # first make perfect prediction, including pairwise part X, Y = toy.generate_blocks_multinomial(noise=2, n_samples=1, seed=1) x, y = X[0], Y[0] n_states = x.shape[-1] pw_horz = -1 * np.eye(n_states) xx, yy = np.indices(pw_horz.shape) # linear ordering constraint horizontally pw_horz[xx > yy] = 1 # high cost for unequal labels vertically pw_vert = -1 * np.eye(n_states) pw_vert[xx != yy] = 1 pw_vert *= 10 # create crf, assemble weight, make prediction crf = DirectionalGridCRF(n_states=3, inference_method='lp') w = np.hstack([np.ones(3), -pw_horz.ravel(), -pw_vert.ravel()]) y_pred = crf.inference(x, w, relaxed=True) # compute psi for prediction psi_y = crf.psi(x, y_pred) assert_equal(psi_y.shape, (crf.size_psi,)) # first unary, then horizontal, then vertical unary_psi = crf.get_unary_weights(psi_y) pw_psi_horz, pw_psi_vert = crf.get_pairwise_weights(psi_y) # test unary xx, yy = np.indices(y.shape) assert_array_almost_equal(unary_psi, np.bincount(y.ravel(), x[xx, yy, y].ravel()))
def test_energy(): # make sure that energy as computed by ssvm is the same as by lp np.random.seed(0) found_fractional = False crf = DirectionalGridCRF(n_states=3, inference_method='lp') while not found_fractional: x = np.random.normal(size=(4, 4, 3)) unary_params = np.ones(3) pw1 = np.random.normal(size=(3, 3)) pw2 = np.random.normal(size=(3, 3)) w = np.hstack([unary_params, pw1.ravel(), pw2.ravel()]) res, energy = crf.inference(x, w, relaxed=True, return_energy=True) found_fractional = np.any(np.max(res[0], axis=-1) != 1) psi = crf.psi(x, res) energy_svm = np.dot(psi, w) assert_almost_equal(energy, -energy_svm) if not found_fractional: # exact discrete labels, test non-relaxed version print("non-relaxed!") res, energy = crf.inference(x, w, relaxed=False, return_energy=True) psi = crf.psi(x, res) energy_svm = np.dot(psi, w) assert_almost_equal(energy, -energy_svm)
def test_psi_discrete(): X, Y = toy.generate_blocks_multinomial(noise=2, n_samples=1, seed=1) x, y = X[0], Y[0] crf = DirectionalGridCRF(n_states=3, inference_method='lp') psi_y = crf.psi(x, y) assert_equal(psi_y.shape, (crf.size_psi,)) # first unary, then horizontal, then vertical unary_psi = crf.get_unary_weights(psi_y) pw_psi_horz, pw_psi_vert = crf.get_pairwise_weights(psi_y) xx, yy = np.indices(y.shape) assert_array_almost_equal(unary_psi, np.bincount(y.ravel(), x[xx, yy, y].ravel())) assert_array_equal(pw_psi_vert, np.diag([9 * 4, 9 * 4, 9 * 4])) vert_psi = np.diag([10 * 3, 10 * 3, 10 * 3]) vert_psi[1, 0] = 10 vert_psi[2, 1] = 10 assert_array_equal(pw_psi_horz, vert_psi)
def test_inference(): # Test inference with different weights in different directions X, Y = toy.generate_blocks_multinomial(noise=2, n_samples=1, seed=1) x, y = X[0], Y[0] n_states = x.shape[-1] edges = _make_grid_edges(x, neighborhood=4) edge_list = _make_grid_edges(x, 4, return_lists=True) edges = np.vstack(edge_list) pw_horz = -1 * np.eye(n_states) xx, yy = np.indices(pw_horz.shape) # linear ordering constraint horizontally pw_horz[xx > yy] = 1 # high cost for unequal labels vertically pw_vert = -1 * np.eye(n_states) pw_vert[xx != yy] = 1 pw_vert *= 10 # generate edge weights edge_weights_horizontal = np.repeat(pw_horz[np.newaxis, :, :], edge_list[0].shape[0], axis=0) edge_weights_vertical = np.repeat(pw_vert[np.newaxis, :, :], edge_list[1].shape[0], axis=0) edge_weights = np.vstack([edge_weights_horizontal, edge_weights_vertical]) # do inference res = lp_general_graph(-x.reshape(-1, n_states), edges, edge_weights, exact=False) # same inference through CRF inferface crf = DirectionalGridCRF(n_states=3, inference_method='lp') w = np.hstack([np.ones(3), -pw_horz.ravel(), -pw_vert.ravel()]) y_pred = crf.inference(x, w, relaxed=True) assert_array_almost_equal(res[0], y_pred[0].reshape(-1, n_states)) assert_array_almost_equal(res[1], y_pred[1]) assert_array_equal(y, np.argmax(y_pred[0], axis=-1))