예제 #1
0
def test_energy():
    # make sure that energy as computed by ssvm is the same as by lp
    np.random.seed(0)
    for inference_method in get_installed(["lp", "ad3"]):
        found_fractional = False
        crf = DirectionalGridCRF(n_states=3, n_features=3,
                                 inference_method=inference_method)
        while not found_fractional:
            x = np.random.normal(size=(7, 8, 3))
            unary_params = np.random.normal(size=(3, 3))
            pw1 = np.random.normal(size=(3, 3))
            pw2 = np.random.normal(size=(3, 3))
            w = np.hstack([unary_params.ravel(), pw1.ravel(), pw2.ravel()])
            res, energy = crf.inference(x, w, relaxed=True, return_energy=True)
            found_fractional = np.any(np.max(res[0], axis=-1) != 1)

            joint_feature = crf.joint_feature(x, res)
            energy_svm = np.dot(joint_feature, w)

            assert_almost_equal(energy, -energy_svm)
            if not found_fractional:
                # exact discrete labels, test non-relaxed version
                res, energy = crf.inference(x, w, relaxed=False,
                                            return_energy=True)
                joint_feature = crf.joint_feature(x, res)
                energy_svm = np.dot(joint_feature, w)

                assert_almost_equal(energy, -energy_svm)
예제 #2
0
def test_inference():
    # Test inference with different weights in different directions

    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]

    edge_list = make_grid_edges(x, 4, return_lists=True)
    edges = np.vstack(edge_list)

    pw_horz = -1 * np.eye(n_states)
    xx, yy = np.indices(pw_horz.shape)
    # linear ordering constraint horizontally
    pw_horz[xx > yy] = 1

    # high cost for unequal labels vertically
    pw_vert = -1 * np.eye(n_states)
    pw_vert[xx != yy] = 1
    pw_vert *= 10

    # generate edge weights
    edge_weights_horizontal = np.repeat(pw_horz[np.newaxis, :, :],
                                        edge_list[0].shape[0],
                                        axis=0)
    edge_weights_vertical = np.repeat(pw_vert[np.newaxis, :, :],
                                      edge_list[1].shape[0],
                                      axis=0)
    edge_weights = np.vstack([edge_weights_horizontal, edge_weights_vertical])

    # do inference
    res = lp_general_graph(-x.reshape(-1, n_states), edges, edge_weights)

    for inference_method in get_installed(["lp", "ad3"]):
        # same inference through CRF inferface
        crf = DirectionalGridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=True)
        if isinstance(y_pred, tuple):
            # ad3 produces an integer result if it found the exact solution
            assert_array_almost_equal(res[0], y_pred[0].reshape(-1, n_states))
            assert_array_almost_equal(res[1], y_pred[1])
            assert_array_equal(y, np.argmax(y_pred[0], axis=-1))

    for inference_method in get_installed(["lp", "ad3", "qpbo"]):
        # again, this time discrete predictions only
        crf = DirectionalGridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=False)
        assert_array_equal(y, y_pred)
예제 #3
0
def test_inference():
    # Test inference with different weights in different directions

    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]

    edge_list = make_grid_edges(x, 4, return_lists=True)
    edges = np.vstack(edge_list)

    pw_horz = -1 * np.eye(n_states)
    xx, yy = np.indices(pw_horz.shape)
    # linear ordering constraint horizontally
    pw_horz[xx > yy] = 1

    # high cost for unequal labels vertically
    pw_vert = -1 * np.eye(n_states)
    pw_vert[xx != yy] = 1
    pw_vert *= 10

    # generate edge weights
    edge_weights_horizontal = np.repeat(pw_horz[np.newaxis, :, :],
                                        edge_list[0].shape[0], axis=0)
    edge_weights_vertical = np.repeat(pw_vert[np.newaxis, :, :],
                                      edge_list[1].shape[0], axis=0)
    edge_weights = np.vstack([edge_weights_horizontal, edge_weights_vertical])

    # do inference
    res = lp_general_graph(-x.reshape(-1, n_states), edges, edge_weights)

    for inference_method in get_installed(["lp", "ad3"]):
        # same inference through CRF inferface
        crf = DirectionalGridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=True)
        if isinstance(y_pred, tuple):
            # ad3 produces an integer result if it found the exact solution
            assert_array_almost_equal(res[0], y_pred[0].reshape(-1, n_states))
            assert_array_almost_equal(res[1], y_pred[1])
            assert_array_equal(y, np.argmax(y_pred[0], axis=-1))

    for inference_method in get_installed(["lp", "ad3", "qpbo"]):
        # again, this time discrete predictions only
        crf = DirectionalGridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=False)
        assert_array_equal(y, y_pred)
예제 #4
0
def test_joint_feature_continuous():
    # FIXME
    # first make perfect prediction, including pairwise part
    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]

    pw_horz = -1 * np.eye(n_states)
    xx, yy = np.indices(pw_horz.shape)
    # linear ordering constraint horizontally
    pw_horz[xx > yy] = 1

    # high cost for unequal labels vertically
    pw_vert = -1 * np.eye(n_states)
    pw_vert[xx != yy] = 1
    pw_vert *= 10

    # create crf, assemble weight, make prediction
    for inference_method in get_installed(["lp", "ad3"]):
        crf = DirectionalGridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=True)

        # compute joint_feature for prediction
        joint_feature_y = crf.joint_feature(x, y_pred)
        assert_equal(joint_feature_y.shape, (crf.size_joint_feature,))