def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 1 / 2 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['opt'] = 'adam' c['loss'] = pearsonobj c['batch_size'] = 64 c['nb_epoch'] = 16 c['fix_layers'] = [] module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 1/2 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['opt'] = 'adam' c['loss'] = ranknet # XXX: binary_crossentropy back? c['balance_class'] = True # seems essential c['batch_size'] = 64 c['nb_epoch'] = 16 c['epoch_fract'] = 1/4 # XXX: or much smaller? c['fix_layers'] = [] module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 1/2 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['opt'] = 'adam' c['loss'] = pearsonobj c['batch_size'] = 64 c['nb_epoch'] = 16 c['fix_layers'] = [] module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(model_config, task_config, params): c = default_config(model_config, task_config) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(model_config, task_config, params): c = default_config(model_config, task_config) # by default, model_config > task_config for p in params: keyword, value = p.split('=') c[keyword] = eval(value) ps, h = hash_params(c) return c, ps, h
def config(model_config, task_config, params): c = default_config(model_config, task_config) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) # post-ps,h c-munging - only things that are redundant to whatever # is user-visible if c['prescoring'] is not None: prescoring_setup(c, task_config) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['loss'] = ranknet module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 3/4 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.dot_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 2 c['loss'] = pearsonobj # ...or 'categorical_crossentropy' module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 50 c['inp_e_dropout'] = 1 / 2 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['loss'] = 'binary_crossentropy' c['nb_epoch'] = 2 module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 1/2 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['batch_size'] = 192 c['loss'] = 'binary_crossentropy' module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 3 / 4 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.dot_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 2 c['loss'] = pearsonobj # ...or 'categorical_crossentropy' c['batch_size'] = 160 c['nb_epoch'] = 32 module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 1/2 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 1 c['loss'] = ranknet c['balance_class'] = False c['batch_size'] = 160 c['nb_epoch'] = 16 c['epoch_fract'] = 1/4 module_config(c) for p in params: k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
def config(module_config, params): c = dict() c['embdim'] = 300 c['inp_e_dropout'] = 1/2 c['inp_w_dropout'] = 0 c['e_add_flags'] = True c['ptscorer'] = B.mlp_ptscorer c['mlpsum'] = 'sum' c['Ddim'] = 2 c['loss'] = 'categorical_crossentropy' c['balance_class'] = False c['batch_size'] = 160 c['nb_epoch'] = 32 module_config(c) for p in params: print(p) k, v = p.split('=') c[k] = eval(v) ps, h = hash_params(c) return c, ps, h
task.load_vocab(conf['vocabf']) task.load_data(trainf, valf) tuneargs = dict() for p in params: k, v = p.split('=') v = eval(v) if isinstance(v, list) or isinstance(v, dict): tuneargs[k] = v rs = RandomSearch(modelname+'_'+taskname+'_log.txt', **tuneargs) for ps, h, pardict in rs(): # final config for this run conf, ps, h = config(model_module.config, task.config, []) for k, v in pardict.items(): conf[k] = v ps, h = hash_params(conf) task.set_conf(conf) runid = '%s-%s-%x' % (taskname, modelname, h) print() print(' ...... %s .................... %s' % (runid, ps)) try: model, res = train_and_eval(runid, model_module.prep_model, task, conf) rs.report(ps, h, res[1]) except Exception as e: print(e) time.sleep(1)
k, v = p.split('=') v = eval(v) if isinstance(v, list) or isinstance(v, dict): tuneargs[k] = v elif isinstance(v, int) or isinstance(v, string): tuneargs[k] = [v] # rs = RandomSearch(modelname+'_'+taskname+'_log.txt', **tuneargs) # Permutation does not support dict argument like "cdim" rs = PermutationSearch(modelname + '_' + taskname + '_log.txt', **tuneargs) for ps, h, pardict in rs(): # final config for this run conf, ps, h = config(model_module.config, task.config, []) for k, v in pardict.items(): conf[k] = v ps, h = hash_params(conf) task.set_conf(conf) runid = '%s-%s-%x' % (taskname, modelname, h) print() print(' ...... %s .................... %s' % (runid, ps)) try: model, res = train_and_eval(runid, model_module.prep_model, task, conf) rs.report(ps, h, res[1]) except Exception as e: print(e) time.sleep(1)