def load_set(fname, vocab=None, spad=spad): s0, s1, y = loader.load_msrpara(fname) if vocab is None: vocab = Vocabulary(s0 + s1) si0 = vocab.vectorize(s0, spad=spad) si1 = vocab.vectorize(s1, spad=spad) f0, f1 = nlp.sentence_flags(s0, s1, spad, spad) gr = graph_input_anssel(si0, si1, y, f0, f1, s0, s1) return (s0, s1, y, vocab, gr)
def load_set(self, fname): s0, s1, y = loader.load_msrpara(fname) if self.vocab is None: vocab = Vocabulary(s0 + s1) else: vocab = self.vocab si0 = vocab.vectorize(s0, spad=self.s0pad) si1 = vocab.vectorize(s1, spad=self.s1pad) f0, f1 = nlp.sentence_flags(s0, s1, self.s0pad, self.s1pad) gr = graph_input_anssel(si0, si1, y, f0, f1, s0, s1) return (gr, y, vocab)
def load_set(self, fname, lists=None): if lists: s0, s1, y = lists else: s0, s1, y = loader.load_msrpara(fname) if self.vocab is None: vocab = Vocabulary(s0 + s1, prune_N=self.c['embprune'], icase=self.c['embicase']) else: vocab = self.vocab si0, sj0 = vocab.vectorize(s0, self.emb, spad=self.s0pad) si1, sj1 = vocab.vectorize(s1, self.emb, spad=self.s1pad) f0, f1 = nlp.sentence_flags(s0, s1, self.s0pad, self.s1pad) gr = graph_input_anssel(si0, si1, sj0, sj1, None, None, y, f0, f1, s0, s1) return (gr, y, vocab)