def evolution_search(f, para_b): begin_time = datetime.now() Timestamps_list = [] Target_list = [] Parameters_list = [] keys = list(para_b.keys()) dim = len(keys) plog = PrintLog(keys) min = np.ones(dim) max = np.ones(dim) value_list = list(parameters.values()) for i_v in range(dim): min[i_v] = value_list[i_v][0] max[i_v] = value_list[i_v][1] bounds = (min, max) plog.print_header(initialization=True) my_topology = Star() my_options ={'c1': 0.6, 'c2': 0.3, 'w': 0.4} my_swarm = P.create_swarm(n_particles=20, dimensions=dim, options=my_options, bounds=bounds) # The Swarm Class iterations = 30 # Set 100 iterations for i in range(iterations): # Part 1: Update personal best # for evaluated_result in map(evaluate, my_swarm.position): # my_swarm.current_cost = np.append(evaluated_result) # for best_personal_result in map(evaluate, my_swarm.pbest_pos): # Compute personal best pos # my_swarm.pbest_cost = np.append(my_swarm.pbest_cost, best_personal_result) my_swarm.current_cost = np.array(list(map(evaluate, my_swarm.position))) #print(my_swarm.current_cost) my_swarm.pbest_cost = np.array(list(map(evaluate, my_swarm.pbest_pos))) my_swarm.pbest_pos, my_swarm.pbest_cost = P.compute_pbest(my_swarm) # Update and store # Part 2: Update global best # Note that gbest computation is dependent on your topology if np.min(my_swarm.pbest_cost) < my_swarm.best_cost: my_swarm.best_pos, my_swarm.best_cost = my_topology.compute_gbest(my_swarm) # Let's print our output #if i % 2 == 0: # print('Iteration: {} | my_swarm.best_cost: {:.4f}'.format(i + 1, my_swarm.best_cost)) # Part 3: Update position and velocity matrices # Note that position and velocity updates are dependent on your topology my_swarm.velocity = my_topology.compute_velocity(my_swarm) my_swarm.position = my_topology.compute_position(my_swarm) Parameters_list.append(my_swarm.best_pos.tolist()) Target_list.append(1-my_swarm.best_cost) elapse_time = (datetime.now() - begin_time).total_seconds() Timestamps_list.append(elapse_time) # print("The best candidate: ", my_swarm.best_pos) # print("The best result: ", res[1]) plog.print_step(my_swarm.best_pos, 1 - my_swarm.best_cost) if i == 0: plog.print_header(initialization=False) return Timestamps_list, Target_list, Parameters_list
def test_compute_pbest_return_values(swarm): """Test if compute_pbest() gives the expected return values""" expected_cost = np.array([1, 2, 2]) expected_pos = np.array([[1, 2, 3], [4, 5, 6], [1, 1, 1]]) pos, cost = P.compute_pbest(swarm) assert (pos == expected_pos).all() assert (cost == expected_cost).all()
async def attack(self, phys_swarm): if phys_swarm.amount > 5: orders = [] # reinitialize swarm if needed if phys_swarm.amount != self.swarm_size: self.swarm_size = phys_swarm.amount self.phys_swarm_pos = [] for unit in phys_swarm: self.phys_swarm_pos.append( [unit.position.x, unit.position.y]) self.phys_swarm_pos = np.array(self.phys_swarm_pos) self.logical_swarm = P.create_swarm( n_particles=phys_swarm.amount, dimensions=2, options=self.my_options, bounds=([0, 0], [ self.game_info.map_size[0], self.game_info.map_size[1] ]), init_pos=self.phys_swarm_pos, clamp=(0, 5.6)) self.logical_swarm.current_cost = self.fitness( self.logical_swarm.position, phys_swarm) self.logical_swarm.pbest_cost = self.fitness( self.logical_swarm.pbest_pos, phys_swarm) self.logical_swarm.pbest_pos, self.logical_swarm.pbest_cost = P.compute_pbest( self.logical_swarm) if np.min(self.logical_swarm.pbest_cost ) < self.logical_swarm.best_cost: self.logical_swarm.best_pos, self.logical_swarm.best_cost = self.my_topology.compute_gbest( self.logical_swarm) self.logical_swarm.velocity = self.my_topology.compute_velocity( self.logical_swarm) self.logical_swarm.position = self.my_topology.compute_position( self.logical_swarm) # Extract positions from above and issue movement/attack orders # loop through np array compiling positions and appending them to orders list. # The mutas are still ignoring nearby enemies. for row, unit in zip(self.logical_swarm.position, phys_swarm): if self.known_enemy_units.closer_than(unit.radar_range, unit.position).exists: orders.append( unit.attack( self.known_enemy_units.closest_to(unit.position))) else: orders.append( unit.move(Point2(Pointlike((row[0], row[1]))))) await self.do_actions(orders)
async def attack(self, phys_swarm, iteration): if phys_swarm.amount > 10: orders = [] # reinitialize swarm if needed if phys_swarm.amount > self.swarm_size + 3 or iteration > self.iter_of_last_update + 75: self.swarm_size = phys_swarm.amount self.phys_swarm_pos = [] for unit in phys_swarm: self.phys_swarm_pos.append([unit.position.x, unit.position.y]) self.phys_swarm_pos = np.array(self.phys_swarm_pos) self.logical_swarm = P.create_swarm(n_particles=phys_swarm.amount, dimensions=2, options=self.my_options, bounds=([0,0], [self.game_info.map_size[0], self.game_info.map_size[1]]) , init_pos=self.phys_swarm_pos, clamp=(0,4.0)) self.iter_of_last_update = iteration self.logical_swarm.current_cost = self.fitness(self.logical_swarm.position, phys_swarm) self.logical_swarm.pbest_cost = self.fitness(self.logical_swarm.pbest_pos, phys_swarm) self.logical_swarm.pbest_pos, self.logical_swarm.pbest_cost = P.compute_pbest(self.logical_swarm) if np.min(self.logical_swarm.pbest_cost) < self.logical_swarm.best_cost: self.logical_swarm.best_pos, self.logical_swarm.best_cost = self.my_topology.compute_gbest(self.logical_swarm) self.logical_swarm.velocity = self.my_topology.compute_velocity(self.logical_swarm) self.logical_swarm.position = self.my_topology.compute_position(self.logical_swarm) # Extract positions from above and issue movement/attack orders # loop through np array compiling positions and appending them to orders list. wounded_units = phys_swarm.filter(lambda u: u.health_percentage <= .7) phys_swarm = phys_swarm.filter(lambda u: u.health_percentage > .7) for unit in wounded_units: unit.move(self.townhalls.first.position) # The mutas are still ignoring nearby enemies. for row, unit in zip(self.logical_swarm.position, phys_swarm): if self.known_enemy_units.closer_than(unit.radar_range, unit.position).exists: orders.append(unit.stop()) orders.append(unit.attack(self.known_enemy_units.closest_to(unit.position).position)) elif self.known_enemy_units.exists: orders.append(unit.attack(self.known_enemy_units.closest_to(Point2(Pointlike((row[0], row[1])))))) else: orders.append(unit.move(Point2(Pointlike((row[0], row[1]))))) await self.do_actions(orders)
async def attack(self, phys_swarm, iteration): if phys_swarm.amount > 10: orders = [] # I should be able to dynamically add and subtract particles from the swarm... should only init once at beginning... if # The business of adding/subrtracting from swarm should be done in on created/destroyed methods... # do a comprehension that deletes matches positions and alive units? # calcuate the current self.log_swarm.current_cost = self.fitness( self.log_swarm.position, phys_swarm ) self.log_swarm.pbest_cost = self.fitness( self.log_swarm.pbest_pos, phys_swarm ) self.log_swarm.pbest_pos, self.log_swarm.pbest_cost = P.compute_pbest( self.log_swarm ) # if np.min( self.log_swarm.pbest_cost ) < self.log_swarm.best_cost: self.log_swarm.best_pos, self.log_swarm.best_cost = self.my_topology.compute_gbest( self.log_swarm ) # self.logical_swarm.velocity = self.my_topology.compute_velocity( self.log_swarm ) self.logical_swarm.position = self.my_topology.compute_position( self.log_swarm ) #this should be parameterized as aggression... wounded_units = phys_swarm.filter(lambda u: u.health_percentage <= .7) for unit in wounded_units: unit.move(self.townhalls.first.position) phys_swarm = phys_swarm.filter(lambda u: u.health_percentage > .7) for row, unit in zip(self.logical_swarm.position, phys_swarm): orders.append(unit.attack(Point2(Pointlike((row[0], row[1]))))) # might need to get the nearest unit to do this... also check to make sure nearest unit not already assigned a task await self.do_actions(orders)
if np.all(my_swarm.options['feasibility'] == False) == False: break my_swarm.best_cost = min(x for x in my_swarm.pbest_cost if x is not None) min_pos_id = np.where(my_swarm.pbest_cost == my_swarm.best_cost)[0][0] my_swarm.options['best_position'] = my_swarm.pbest_pos[min_pos_id] my_swarm.best_pos = my_topology.compute_gbest(my_swarm, p = 2, k = N) new_best_pos = np.empty([N, dim]) for n in range(N): for d in range(dim): new_best_pos[n][d] = my_swarm.best_pos[n][d] my_swarm.best_pos = new_best_pos my_swarm.velocity = my_topology.compute_velocity(my_swarm) my_swarm.position = my_topology.compute_position(my_swarm) my_swarm.options['feasibility'] = cop.constraints(my_swarm.position) my_swarm.current_cost = cop.sum_violations(my_swarm.position) my_swarm.pbest_pos, my_swarm.pbest_cost = P.compute_pbest(my_swarm) if i%50==0: print('Iteration: {} | my_swarm.best_cost: {:.4f}'.format(i+1, my_swarm.best_cost)) if np.all(my_swarm.options['feasibility'] == False) == False: print('The feasible region was found!') print('The following are all the known feasible points:') print(my_swarm.position[my_swarm.options['feasibility'] == True]) else: print('The feasible region was not found :(') print('The best sum of violations found by our swarm is: {:.4f}'.format(my_swarm.best_cost)) print('The best position found by our swarm is: {}'.format(my_swarm.options['best_position']))
def optimize(self, objective_func, iters, print_step=1, verbose=1, **kwargs): ub = 1 lb = 0 for i in range(iters): w = 0.9 - i * ((0.9 - 0.4) / iters) my_c = 0.1 - i * ((0.1 - 0) / (iters / 2)) if my_c < 0: my_c = 0 # print(my_c) s = 2 * random.random() * my_c # Seperation weight a = 2 * random.random() * my_c # Alignment weight c = 2 * random.random() * my_c # Cohesion weight f = 2 * random.random() # Food attraction weight e = my_c # Enemy distraction weight # Compute cost for current position and personal best self.swarm.current_cost = objective_func(self.swarm.position, **kwargs) self.swarm.pbest_cost = objective_func(self.swarm.pbest_pos, **kwargs) self.swarm.pbest_pos, self.swarm.pbest_cost = compute_pbest( self.swarm) self.swarm.pworst_pos, self.swarm.pworst_cost = self.compute_pworst( self.swarm) pmin_cost_idx = np.argmin(self.swarm.pbest_cost) pmax_cost_idx = np.argmax(self.swarm.pworst_cost) # pmax_cost_idx = np.argmax(self.swarm.pbest_cost) # Update gbest from neighborhood # self.swarm.best_cost = np.min(self.swarm.pbest_cost) # self.swarm.pbest_pos = self.swarm.pbest_pos[np.argmin(self.swarm.pbest_cost)] # best_cost_yet_found = np.min(self.swarm.best_cost) self.swarm.best_pos, self.swarm.best_cost = self.top.compute_gbest( self.swarm, 2, self.n_particles) # Updating Food position if self.swarm.pbest_cost[pmin_cost_idx] < self.food_fitness: self.food_fitness = self.swarm.pbest_cost[pmin_cost_idx] self.food_pos = self.swarm.pbest_pos[pmin_cost_idx] # Updating Enemy position if self.swarm.pworst_cost[pmax_cost_idx] > self.enemy_fitness: self.enemy_fitness = self.swarm.pworst_cost[pmax_cost_idx] self.enemy_pos = self.swarm.pworst_pos[pmax_cost_idx] # best_cost_yet_found = np.min(self.swarm.best_cost) for j in range(self.n_particles): S = np.zeros(self.dimensions) A = np.zeros(self.dimensions) C = np.zeros(self.dimensions) F = np.zeros(self.dimensions) E = np.zeros(self.dimensions) # Calculating Separation(S) for k in range(self.n_particles): S += (self.swarm.position[k] - self.swarm.position[j]) S = -S # Calculating Allignment(A) for k in range(self.n_particles): A += self.swarm.velocity[k] A = (A / self.n_particles) # Calculating Cohesion for k in range(self.n_particles): C += self.swarm.position[k] C = (C / self.n_particles) - self.swarm.position[j] F = self.food_pos - self.swarm.position[ j] # Calculating Food postion E = self.enemy_pos - self.swarm.position[ j] # Calculating Enemy position self.swarm.velocity[j] = (s * S + a * A + c * C + f * F + e * E) + w * self.swarm.velocity[j] self.swarm.position[j] = self.compute_position( self.swarm.velocity[j]) # Print to console if i % print_step == 0: cli_print( "Iteration {}/{}, cost: {}".format( i + 1, iters, np.min(self.swarm.best_cost)), verbose, 2, logger=self.logger, ) # Obtain the final best_cost and the final best_position # final_best_cost = np.min(self.swarm.pbest_cost) # final_best_pos = self.swarm.pbest_pos[np.argmin(self.swarm.pbest_cost)] final_best_cost = self.swarm.best_cost.copy() final_best_pos = self.swarm.best_pos.copy() print("==============================\nOptimization finished\n") print("Final Best Cost : ", final_best_cost, "\nBest Value : ", final_best_pos) # end_report( # final_best_cost, final_best_pos, verbose, logger=self.logger # ) return (final_best_cost, final_best_pos)
def optimize(self): results_2k = 0 results_10k = 0 results_20k = 0 fes = 0 # Function evaluations l_lim = self.cop.l_lim u_lim = self.cop.u_lim if l_lim == None or u_lim == None: bounds = None else: l_lims = np.asarray([l_lim] * self.dim) u_lims = np.asarray([u_lim] * self.dim) bounds = (l_lims, u_lims) my_options = {'c1': self.c1, 'c2': self.c2, 'w': self.w, 'feasibility': np.zeros(self.N, dtype = bool), 'best_position': None} my_swarm = P.create_swarm(n_particles = self.N, dimensions = self.dim, options = my_options, bounds = bounds) my_swarm.options['feasibility'] = self.cop.constraints(my_swarm.position) my_swarm.current_cost = self.cop.sum_violations(my_swarm.position) fes += self.N my_swarm.pbest_pos = my_swarm.position my_swarm.pbest_cost = my_swarm.current_cost for i in range(self.iterations): if np.all(my_swarm.options['feasibility'] == False) == False: if i == 0: my_swarm.best_cost = 0 break my_swarm.best_cost = min(x for x in my_swarm.pbest_cost if x is not None) min_pos_id = np.where(my_swarm.pbest_cost == my_swarm.best_cost)[0][0] my_swarm.options['best_position'] = my_swarm.pbest_pos[min_pos_id] my_swarm.best_pos = self.my_topology.compute_gbest(my_swarm, p = 2, k = self.N) if fes == 2000: if self.verbose == True: print('FES: {} | my_swarm.best_cost: {:.4f}'.format(fes, my_swarm.best_cost)) results_2k = my_swarm.best_cost elif fes == 10000: if self.verbose == True: print('FES: {} | my_swarm.best_cost: {:.4f}'.format(fes, my_swarm.best_cost)) results_10k = my_swarm.best_cost elif fes == 20000: if self.verbose == True: print('FES: {} | my_swarm.best_cost: {:.4f}'.format(fes, my_swarm.best_cost)) results_20k = my_swarm.best_cost break new_best_pos = np.empty([self.N, self.dim]) for n in range(self.N): for d in range(self.dim): new_best_pos[n][d] = my_swarm.best_pos[n][d] my_swarm.best_pos = new_best_pos my_swarm.velocity = self.my_topology.compute_velocity(my_swarm) my_swarm.position = self.my_topology.compute_position(my_swarm) my_swarm.options['feasibility'] = self.cop.constraints(my_swarm.position) my_swarm.current_cost = self.cop.sum_violations(my_swarm.position) fes += self.N my_swarm.pbest_pos, my_swarm.pbest_cost = P.compute_pbest(my_swarm) if i%50==0: if self.verbose == True: print('Iteration: {} | my_swarm.best_cost: {:.4f}'.format(i+1, my_swarm.best_cost)) if np.all(my_swarm.options['feasibility'] == False) == False: self.success = True if self.verbose == True: print('The feasible region was found!') print('The following are all the known feasible points:') print(my_swarm.position[my_swarm.options['feasibility'] == True]) else: if self.verbose == True: print('The feasible region was not found :(') print('The best sum of violations found by our swarm is: {:.4f}'.format(my_swarm.best_cost)) print('The best position found by our swarm is: {}'.format(my_swarm.options['best_position'])) return (my_swarm.best_cost, results_2k, results_10k, results_20k, self.success)
def test_input_swarm(self, swarm): """Test if method raises AttributeError with wrong swarm""" with pytest.raises(AttributeError): P.compute_pbest(swarm)