def get_source_data(file_path: Path, freq: str) -> pd.DataFrame: if not file_path.exists(): logger.info(f"{str(file_path)} is not exists!") return pd.DataFrame() if file_path.parent.parent.name == "ds": if freq == "day": reader = TdxExHqDailyBarReader() else: reader = TdxLCMinBarReader() else: # Todo 对股票数据进行后复权 if freq == "day": reader = TdxDailyBarReader() else: reader = TdxLCMinBarReader() try: df = reader.get_df(str(file_path)) except: logger.warning(f"Cant read {str(file_path)} ") return pd.DataFrame() df = df.reset_index() df["date"] = df["date"].astype(str).astype(np.datetime64) return df
def tdxread5m(market, code): # .5 minutes market = str(market) code = str(code) reader = TdxLCMinBarReader() #reader = TdxDailyBarReader() df = reader.get_df(panfu + market + '/fzline/' + market + code + '.lc5') return df
def __init__(self): self.day_reader = TdxDailyBarReader() self.minline_reader = TdxLCMinBarReader() self.block_reader = BlockReader() # pandas数据显示设置 pd.set_option('display.max_columns', None) # 显示所有列
def _get_source_data(self, file_path: Path) -> pd.DataFrame: if file_path.parent.parent.name == "ds": if self.freq == "day": reader = TdxExHqDailyBarReader() else: reader = TdxLCMinBarReader() else: if self.freq == "day": reader = TdxDailyBarReader() else: reader = TdxLCMinBarReader() try: df = reader.get_df(str(file_path)) except: logger.warning(f"Cant read {str(file_path)} ") return pd.DataFrame() instrument = self.tdx_files_info[self.tdx_files_info["file_path"] == file_path]['instrument'].iloc[0] if instrument in ['future', 'option']: df.rename(columns={ 'amount': "position", "jiesuan": "settle" }, inplace=True) if "hk_stock_amount" in df.columns: del df["hk_stock_amount"] df = df.reset_index() df[self.date_field_name] = df[self.date_field_name].astype(str).astype( np.datetime64) return df
def tdxreadm(code): # 1 minutes market = marketcode(code) code = str(code) reader = TdxLCMinBarReader() #reader = TdxDailyBarReader() df = reader.get_df(panfu + '\\' + market + '\\minline\\' + market + code + '.lc1') return df
def fzline(self, symbol=None): ''' 获取5分钟线 :param symbol: :return: pd.dataFrame or None ''' symbol = self.find_path(symbol, subdir='fzline', ext=['lc5', '5']) reader = TdxLCMinBarReader() if symbol is not None: return reader.get_df(symbol) return None
def main(input, output, datatype): """ 通达信数据文件读取 """ if datatype == 'daily': reader = TdxDailyBarReader() elif datatype == 'ex_daily': reader = TdxExHqDailyBarReader() elif datatype == 'lc': reader = TdxLCMinBarReader() elif datatype == 'gbbq': reader = GbbqReader() elif datatype == 'block': reader = BlockReader() else: reader = TdxMinBarReader() try: df = reader.get_df(input) if (output): click.echo("写入到文件 : " + output) df.to_csv(output) else: print(df) except Exception as e: print(str(e))
def main(input, output, datatype): """ 通达信数据文件读取 """ if datatype == 'daily': reader = TdxDailyBarReader() elif datatype == 'ex_daily': reader = TdxExHqDailyBarReader() elif datatype == 'lc': reader = TdxLCMinBarReader() elif datatype == 'gbbq': reader = GbbqReader() elif datatype == 'block': reader = BlockReader() elif datatype == 'customblock': reader = CustomerBlockReader() elif datatype == 'history_financial' or datatype == 'hf': reader = HistoryFinancialReader() else: reader = TdxMinBarReader() try: df = reader.get_df(input) if output: click.echo("写入到文件 : " + output) df.to_csv(output) else: print(df) except Exception as e: print(str(e))
def minute(self, symbol=None, suffix=1): ''' 获取1,5分钟线 :param suffix: :param symbol: :return: pd.dataFrame or None ''' subdir = 'fzline' if str(suffix) == '5' else 'minline' suffix = ['lc5', '5'] if str(suffix) == '5' else ['lc1', '1'] symbol = self.find_path(symbol, subdir=subdir, ext=suffix) reader = TdxLCMinBarReader() if symbol is not None: return reader.get_df(symbol) return None
class TdxLocalHelper: BlockReader_TYPE_FLAT = 0 BlockReader_TYPE_GROUP = 1 def __init__(self): self.day_reader = TdxDailyBarReader() self.minline_reader = TdxLCMinBarReader() self.block_reader = BlockReader() # pandas数据显示设置 pd.set_option('display.max_columns', None) # 显示所有列 #pd.set_option('display.max_rows', None) # 显示所有行 # 解析日线文件数据 #返回值:date:open,high,low,close,amount,volume def read_tdx_local_day(self): #df = reader.get_df(config.tdx_local_sz_day + "sz000001.day") sh000001.day df = self.day_reader.get_df(config.tdx_local_sh_day + "sh000001.day") print(df) # 批量格式化日期字段,去掉分隔符 def format_date(self, date): return ((str(date))[0:10]).replace('-', '') # 解析1分钟和5分钟数据 #返回值:date: open,high,low,close,amount,volume #csv格式:code,ts_code,trade_date(缩写),trade_time,time_index,open,high,low,close,amount,volume def read_tdx_local_minline_all(self, full_path,filename=""): #df = reader.get_df(config.tdx_local_sz_minline1 + "sz399001.lc1") #df = reader.get_df(config.tdx_local_sz_minline5 + "sz399001.lc5") #df = self.minline_reader.get_df(config.tdx_local_sh_minline1 + "sh600300.lc1") code = filename[2:8] ts_code = code + "." + filename[0:2].upper() df = self.minline_reader.get_df(full_path) df.insert(0, 'trade_time', df.index) df.insert(0, 'trade_date', df.index.floor('D')) df.insert(0, 'ts_code', ts_code) df.insert(0, 'code', code) df.reset_index(drop=True,inplace=True) #参考:https://zhuanlan.zhihu.com/p/110819220?from_voters_page=true df.insert(4, 'time_index', df.index) #df['trade_time'] = pd.to_datetime(df['trade_time'], infer_datetime_format=True).dt.normalize() # strftime('%m/%d/%Y') # format='%m/%d/%Y').dt.date #df['trade_time'] = df['trade_time'].apply(lambda x: x.strftime('%H:%M:%S')) df['trade_time'] = pd.to_datetime(df['trade_time'], format='%H:%M:%S').dt.strftime('%H:%M:%S') df['time_index'] = df['trade_time'].apply(lambda x: datatime_util.stockTradeTime2Index(x)) df['trade_date'] = df['trade_date'].apply(lambda x: self.format_date(x)) df['open'] = df['open'].apply(lambda x: round(x,2)) df['high'] = df['high'].apply(lambda x: round(x, 2)) df['low'] = df['low'].apply(lambda x: round(x, 2)) df['close'] = df['close'].apply(lambda x: round(x, 2)) csv_filename = config.tdx_csv_minline1_all + ts_code + ".csv" if os.path.isfile(csv_filename): os.remove(csv_filename) df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig") else: df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig") # 解析1分钟和5分钟数据,输出简单形式,只返回price和vol # 返回值:date: open,high,low,close,amount,volume # csv格式:code,ts_code,trade_date(缩写),trade_time,time_index,price,volume def read_tdx_local_minline_simple(self, full_path, filename=""): # df = reader.get_df(config.tdx_local_sz_minline1 + "sz399001.lc1") # df = reader.get_df(config.tdx_local_sz_minline5 + "sz399001.lc5") # df = self.minline_reader.get_df(config.tdx_local_sh_minline1 + "sh600300.lc1") code = filename[2:8] ts_code = code + "." + filename[0:2].upper() df = self.minline_reader.get_df(full_path) df.insert(0, 'trade_time', df.index) df.insert(0, 'trade_date', df.index.floor('D')) df.insert(0, 'ts_code', ts_code) df.insert(0, 'code', code) df.reset_index(drop=True, inplace=True) # 参考:https://zhuanlan.zhihu.com/p/110819220?from_voters_page=true df.insert(4, 'time_index', df.index) # df['trade_time'] = pd.to_datetime(df['trade_time'], infer_datetime_format=True).dt.normalize() # strftime('%m/%d/%Y') # format='%m/%d/%Y').dt.date # df['trade_time'] = df['trade_time'].apply(lambda x: x.strftime('%H:%M:%S')) df['trade_time'] = pd.to_datetime(df['trade_time'], format='%H:%M:%S').dt.strftime('%H:%M:%S') df['time_index'] = df['trade_time'].apply(lambda x: datatime_util.stockTradeTime2Index(x)) df['trade_date'] = df['trade_date'].apply(lambda x: self.format_date(x)) #df['open'] = df['open'].apply(lambda x: round(x, 2)) #df['high'] = df['high'].apply(lambda x: round(x, 2)) #df['low'] = df['low'].apply(lambda x: round(x, 2)) df['close'] = df['close'].apply(lambda x: round(x, 2)) df.rename(columns={'close': 'price'}, inplace=True) df.drop(['open', 'high', 'low', 'amount'], axis=1, inplace=True) csv_filename = config.tdx_csv_minline1_simple + ts_code + ".csv" if os.path.isfile(csv_filename): os.remove(csv_filename) df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig") else: df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig") # 解析板块数据 #扁平格式返回值:blockname,block_type,code_index,code def read_tdx_local_block(self): ##指数板块 风格板块 概念板块 一般板块 block_filename = ["block_zs.dat", "block_fg.dat", "block_gn.dat", "block.dat"] for block in block_filename: df = self.block_reader.get_df(config.tdx_local_block + block) # 默认扁平格式 df_group = self.block_reader.get_df(config.tdx_local_block + block, self.BlockReader_TYPE_GROUP) #分组格式 filename = config.tdx_csv_block + block[0:-4] + ".csv" filename_group = config.tdx_csv_block + block[0:-4] + "_group" + ".csv" if os.path.isfile(filename): df.to_csv(filename, index=False, mode='a', header=False, sep=',', encoding="utf_8_sig") df_group.to_csv(filename_group, index=False, mode='a', header=False, sep=',', encoding="utf_8_sig") else: df.to_csv(filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig") df_group.to_csv(filename_group, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig") # 解析分时图数据 def read_tdx_local_fst(self): reader = TdxMinBarReader() #这个reader不能解析分时图文件 # df = reader.get_df(config.tdx_local_sz_minline + "sz399001.lc1") df = reader.get_df(config.tdx_local_fst + "sh20200417.tfz") print(df) # 解析分时图文件,没有解析出来 """ 通达信的zst的数据记录是每6508个字节为一天的数据, 每26个字节为一个分钟的记录,这26个字节是这样分配的, 时间占两个字节化为十进制为570的话表示9:30分(570/60=9.5) 下一个是占四个字节的叫现价, 再下四个字节叫均价, 另外还有两个字节为该分钟成交量(现在有可能已经改为四个字节), 剩下的14个字节是预留的, """ def parse_fst_file(self): full_path = config.tdx_local_fst + "sh20200417.tfz" filesize = os.path.getsize(full_path) # 文件字节数 print("filesize为: %s" % (filesize)) if filesize == 0: return #print(chardet.detect(open(full_path, mode='rb').read())) #查看文件编码格式 file = open(full_path, "rb") try: i = 0 while True: print("游标位置:", file.tell()) stock_date = file.read(2) cur_price = file.read(4) arr_price = file.read(4) vol = file.read(4) stock_reservation = file.read(12) stock_date = unpack("h", stock_date) cur_price = unpack("l", cur_price) arr_price = unpack("l", arr_price) vol = unpack("l", vol) #stock_reservation = unpack("s", stock_reservation) print(stock_date) print(cur_price) print(arr_price) print(vol) print(stock_reservation) i = i + 1 if i == 2:break for line in file: result = chardet.detect(line) print("code: ", result) buf_size = len(line) rec_count = buf_size // 32 begin = 0 end = 32 print("行内容:", line) print("buf_size:", buf_size) print("rec_count:", rec_count) a = unpack('IIIIIfII', line[begin:end]) print("解码后的数据0: %s" % (str(a[0]))) print("解码后的数据1: %s" % (str(a[1]))) print("解码后的数据2: %s" % (str(a[2]))) break finally: file.close()
def get_bar(code, start=None, end=None, freq='day', exchange=None): """ 股票成交量 volume 单位是100股 """ code = code.upper() standard_freq = parse_frequency_str(freq) try: tdx_code = _get_tdx_code_from_security_dataframe(code, exchange) except: util_log_info("Can't get tdx_code from {}".format(code)) return if standard_freq in ['D', 'w', 'M', 'Q', 'Y']: file_path = _generate_path(code, 'D', tdx_code) elif standard_freq in ['1min', '5min', '30min', '60min']: file_path = _generate_path(code, '5min', tdx_code) elif standard_freq in ['1min']: file_path = _generate_path(code, '1min', tdx_code) else: util_log_info('Not supported frequency {}'.format(freq)) return if not os.path.exists(file_path): util_log_info('=={}== {} file is not exists!'.format(code, file_path)) return # 统一freq的数据结构 if tdx_code in ['sh', 'sz']: if standard_freq in ['D', 'w', 'M', 'Q', 'Y']: reader = TdxDailyBarReader() df = reader.get_df(file_path) elif standard_freq in ['1min', '5min', '30min', '60min']: reader = TdxLCMinBarReader() df = reader.get_df(file_path) else: util_log_info('Not supported frequency {}'.format(freq)) return else: if standard_freq in ['D', 'w', 'M', 'Q', 'Y']: reader = TdxExHqDailyBarReader() df = reader.get_df(file_path) elif standard_freq in ['1min', '5min', '30min', '60min']: reader = TdxLCMinBarReader() df = reader.get_df(file_path) else: util_log_info('Not supported frequency {}'.format(freq)) return if len(df) < 1: return recorder = SECURITY_DATAFRAME.loc[code] if isinstance(recorder, pd.DataFrame): instrument = recorder.loc[recorder['tdx_code'] == tdx_code].loc[ code, 'instrument'] exchange = recorder.loc[recorder['tdx_code'] == tdx_code].loc[ code, 'exchange'] else: instrument = recorder['instrument'] exchange = recorder['exchange'] if instrument in ['future', 'option']: df.rename(columns={ 'amount': "position", "jiesuan": "settle" }, inplace=True) if start: start = pd.to_datetime(start) df = df[df.index >= start] if end: end = pd.to_datetime(end) df = df[df.index <= end] df['date'] = df.index df = df.assign(code=code, exchange=exchange) if standard_freq in ['w', 'M', 'Q', 'Y']: df = resample_from_daily_data(df, standard_freq) return df