def test_DataManager_get_data(): datasets = setup_TestDatasets() dm = DataManager(datasets, 'DS1', read_ts_names={f'DS{i}': 'read' for i in range(1, 4)}) data = dm.get_data(1, 1, 1) assert sorted(list(data)) == ['DS1', 'DS2', 'DS3']
def __init__(self, datasets, spatial_ref, metrics_calculators, temporal_matcher=None, temporal_window=1 / 24.0, temporal_ref=None, masking_datasets=None, period=None, scaling='lin_cdf_match', scaling_ref=None): if isinstance(datasets, DataManager): self.data_manager = datasets else: self.data_manager = DataManager(datasets, spatial_ref, period) self.temp_matching = temporal_matcher if self.temp_matching is None: warnings.warn( "You are using the default temporal matcher. If you are using one of the" " newer metric calculators (PairwiseIntercomparisonMetrics," " TripleCollocationMetrics) you should probably use `make_combined_temporal_matcher`" " instead. Have a look at the documentation of the metric calculators for more info." ) self.temp_matching = temporal_matchers.BasicTemporalMatching( window=temporal_window).combinatory_matcher self.temporal_ref = temporal_ref if self.temporal_ref is None: self.temporal_ref = self.data_manager.reference_name self.metrics_c = metrics_calculators for n, k in self.metrics_c: if n < len(self.data_manager.datasets.keys()): raise ValueError('n must be equal to the number of datasets') self.masking_dm = None if masking_datasets is not None: # add temporal reference dataset to the masking datasets since it # is necessary for temporally matching the masking datasets to the # common time stamps. Use _reference here to make a clash with the # names of the masking datasets unlikely masking_datasets.update( {'_reference': datasets[self.temporal_ref]}) self.masking_dm = DataManager(masking_datasets, '_reference', period=period) if type(scaling) == str: self.scaling = DefaultScaler(scaling) else: self.scaling = scaling self.scaling_ref = scaling_ref if self.scaling_ref is None: self.scaling_ref = self.data_manager.reference_name self.luts = self.data_manager.get_luts()
def __init__(self, datasets, spatial_ref, metrics_calculators, temporal_matcher=None, temporal_window=1 / 24.0, temporal_ref=None, masking_datasets=None, period=None, scaling='lin_cdf_match', scaling_ref=None): if type(datasets) is DataManager: self.data_manager = datasets else: self.data_manager = DataManager(datasets, spatial_ref, period) self.temp_matching = temporal_matcher if self.temp_matching is None: self.temp_matching = temporal_matchers.BasicTemporalMatching( window=temporal_window).combinatory_matcher self.temporal_ref = temporal_ref if self.temporal_ref is None: self.temporal_ref = self.data_manager.reference_name self.metrics_c = metrics_calculators for n, k in self.metrics_c: if n < len(self.data_manager.datasets.keys()): raise ValueError('n must be equal to the number of datasets') self.masking_dm = None if masking_datasets is not None: # add temporal reference dataset to the masking datasets since it # is necessary for temporally matching the masking datasets to the # common time stamps. Use _reference here to make a clash with the # names of the masking datasets unlikely masking_datasets.update( {'_reference': datasets[self.temporal_ref]}) self.masking_dm = DataManager(masking_datasets, '_reference', period=period) if type(scaling) == str: self.scaling = DefaultScaler(scaling) else: self.scaling = scaling self.scaling_ref = scaling_ref if self.scaling_ref is None: self.scaling_ref = self.data_manager.reference_name self.luts = self.data_manager.get_luts()
def test_validation_error_n2_k2(): datasets = setup_TestDatasets() dm = DataManager( datasets, "DS1", read_ts_names={d: "read" for d in ["DS1", "DS2", "DS3"]}, ) # n less than number of datasets is no longer allowed with pytest.raises(ValueError): Validation( dm, "DS1", temporal_matcher=temporal_matchers.BasicTemporalMatching( window=1 / 24.0 ).combinatory_matcher, scaling="lin_cdf_match", metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics( other_name="k1" ).calc_metrics }, )
def test_validation_n3_k2_temporal_matching_no_matches(): tst_results = {} datasets = setup_two_without_overlap() dm = DataManager( datasets, "DS1", read_ts_names={d: "read" for d in ["DS1", "DS2", "DS3"]}, ) process = Validation( dm, "DS1", temporal_matcher=temporal_matchers.BasicTemporalMatching( window=1 / 24.0 ).combinatory_matcher, scaling="lin_cdf_match", metrics_calculators={ (3, 2): metrics_calculators.BasicMetrics( other_name="k1" ).calc_metrics }, ) jobs = process.get_processing_jobs() for job in jobs: results = process.calc(*job) assert sorted(list(results)) == sorted(list(tst_results))
def setup_TestDataManager(): grid = grids.CellGrid(np.array([1, 2, 3, 4]), np.array([1, 2, 3, 4]), np.array([4, 4, 2, 1]), gpis=np.array([1, 2, 3, 4])) ds1 = GriddedTsBase("", grid, TestDatasetRuntimeError) ds2 = GriddedTsBase("", grid, TestDatasetRuntimeError) ds3 = GriddedTsBase("", grid, TestDatasetRuntimeError, ioclass_kws={'message': 'Other RuntimeError'}) datasets = { 'DS1': { 'class': ds1, 'columns': ['soil moisture'], 'args': [], 'kwargs': {} }, 'DS2': { 'class': ds2, 'columns': ['sm'], 'args': [], 'kwargs': {}, 'grids_compatible': True }, 'DS3': { 'class': ds3, 'columns': ['sm', 'sm2'], 'args': [], 'kwargs': {}, 'grids_compatible': True } } dm = DataManager(datasets, 'DS1') return dm
def test_validation_n3_k2_temporal_matching_no_matches2(): tst_results = { (("DS1", "x"), ("DS3", "y")): { "n_obs": np.array([1000], dtype=np.int32), "tau": np.array([np.nan], dtype=np.float32), "gpi": np.array([4], dtype=np.int32), "RMSD": np.array([0.0], dtype=np.float32), "lon": np.array([4.0]), "p_tau": np.array([np.nan], dtype=np.float32), "BIAS": np.array([0.0], dtype=np.float32), "p_rho": np.array([0.0], dtype=np.float32), "rho": np.array([1.0], dtype=np.float32), "lat": np.array([4.0]), "R": np.array([1.0], dtype=np.float32), "p_R": np.array([0.0], dtype=np.float32), }, (("DS1", "x"), ("DS3", "x")): { "n_obs": np.array([1000], dtype=np.int32), "tau": np.array([np.nan], dtype=np.float32), "gpi": np.array([4], dtype=np.int32), "RMSD": np.array([0.0], dtype=np.float32), "lon": np.array([4.0]), "p_tau": np.array([np.nan], dtype=np.float32), "BIAS": np.array([0.0], dtype=np.float32), "p_rho": np.array([0.0], dtype=np.float32), "rho": np.array([1.0], dtype=np.float32), "lat": np.array([4.0]), "R": np.array([1.0], dtype=np.float32), "p_R": np.array([0.0], dtype=np.float32), }, } datasets = setup_three_with_two_overlapping() dm = DataManager( datasets, "DS1", read_ts_names={d: "read" for d in ["DS1", "DS2", "DS3"]}, ) process = Validation( dm, "DS1", temporal_matcher=temporal_matchers.BasicTemporalMatching( window=1 / 24.0 ).combinatory_matcher, scaling="lin_cdf_match", metrics_calculators={ (3, 2): metrics_calculators.BasicMetrics( other_name="k1" ).calc_metrics }, ) jobs = process.get_processing_jobs() for job in jobs: results = process.calc(*job) assert sorted(list(results)) == sorted(list(tst_results))
def test_validation_n2_k2_data_manager_argument(): tst_results = { (('DS1', 'x'), ('DS3', 'y')): { 'n_obs': np.array([1000], dtype=np.int32), 'tau': np.array([np.nan], dtype=np.float32), 'gpi': np.array([4], dtype=np.int32), 'RMSD': np.array([0.], dtype=np.float32), 'lon': np.array([4.]), 'p_tau': np.array([np.nan], dtype=np.float32), 'BIAS': np.array([0.], dtype=np.float32), 'p_rho': np.array([0.], dtype=np.float32), 'rho': np.array([1.], dtype=np.float32), 'lat': np.array([4.]), 'R': np.array([1.], dtype=np.float32), 'p_R': np.array([0.], dtype=np.float32)}, (('DS1', 'x'), ('DS2', 'y')): { 'n_obs': np.array([1000], dtype=np.int32), 'tau': np.array([np.nan], dtype=np.float32), 'gpi': np.array([4], dtype=np.int32), 'RMSD': np.array([0.], dtype=np.float32), 'lon': np.array([4.]), 'p_tau': np.array([np.nan], dtype=np.float32), 'BIAS': np.array([0.], dtype=np.float32), 'p_rho': np.array([0.], dtype=np.float32), 'rho': np.array([1.], dtype=np.float32), 'lat': np.array([4.]), 'R': np.array([1.], dtype=np.float32), 'p_R': np.array([0.], dtype=np.float32)}, (('DS1', 'x'), ('DS3', 'x')): { 'n_obs': np.array([1000], dtype=np.int32), 'tau': np.array([np.nan], dtype=np.float32), 'gpi': np.array([4], dtype=np.int32), 'RMSD': np.array([0.], dtype=np.float32), 'lon': np.array([4.]), 'p_tau': np.array([np.nan], dtype=np.float32), 'BIAS': np.array([0.], dtype=np.float32), 'p_rho': np.array([0.], dtype=np.float32), 'rho': np.array([1.], dtype=np.float32), 'lat': np.array([4.]), 'R': np.array([1.], dtype=np.float32), 'p_R': np.array([0.], dtype=np.float32)}} datasets = setup_TestDatasets() dm = DataManager(datasets, 'DS1') process = Validation(dm, 'DS1', temporal_matcher=temporal_matchers.BasicTemporalMatching( window=1 / 24.0).combinatory_matcher, scaling='lin_cdf_match', metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics(other_name='k1').calc_metrics}) jobs = process.get_processing_jobs() for job in jobs: results = process.calc(*job) assert sorted(list(results)) == sorted(list(tst_results))
def __init__(self, datasets, spatial_ref, metrics_calculators, temporal_matcher=None, temporal_window=1 / 24.0, temporal_ref=None, masking_datasets=None, period=None, scaling='lin_cdf_match', scaling_ref=None): if type(datasets) is DataManager: self.data_manager = datasets else: self.data_manager = DataManager(datasets, spatial_ref, period) self.temp_matching = temporal_matcher if self.temp_matching is None: self.temp_matching = temporal_matchers.BasicTemporalMatching( window=temporal_window).combinatory_matcher self.temporal_ref = temporal_ref if self.temporal_ref is None: self.temporal_ref = self.data_manager.reference_name self.metrics_c = metrics_calculators self.masking_dm = None if masking_datasets is not None: # add temporal reference dataset to the masking datasets since it # is necessary for temporally matching the masking datasets to the # common time stamps. Use _reference here to make a clash with the # names of the masking datasets unlikely masking_datasets.update( {'_reference': datasets[self.temporal_ref]}) self.masking_dm = DataManager(masking_datasets, '_reference', period=period) if type(scaling) == str: self.scaling = DefaultScaler(scaling) else: self.scaling = scaling self.scaling_ref = scaling_ref if self.scaling_ref is None: self.scaling_ref = self.data_manager.reference_name self.luts = self.data_manager.get_luts()
def test_DataManager_read_ts_method_names(): ds1 = TestDataset("") datasets = { 'DS1': { 'class': ds1, 'columns': ['soil moisture'], }, 'DS2': { 'class': ds1, 'columns': ['soil moisture'], } } read_ts_method_names = {'DS1': 'read_ts', 'DS2': 'read_ts_other'} dm = DataManager(datasets, 'DS1', read_ts_names=read_ts_method_names) data = dm.read_ds('DS1', 1) data_other = dm.read_ds('DS2', 1) pdtest.assert_frame_equal(data, ds1.read_ts(1)) pdtest.assert_frame_equal(data_other, ds1.read_ts_other(1))
def test_validation_error_n2_k2(): datasets = setup_TestDatasets() dm = DataManager(datasets, 'DS1', read_ts_names={d: 'read' for d in ['DS1', 'DS2', 'DS3']}) # n less than number of datasets is no longer allowed with pytest.raises(ValueError): process = Validation( dm, 'DS1', temporal_matcher=temporal_matchers.BasicTemporalMatching( window=1 / 24.0).combinatory_matcher, scaling='lin_cdf_match', metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics(other_name='k1').calc_metrics})
def test_DataManager_default_add(): grid = grids.CellGrid(np.array([1, 2, 3, 4]), np.array([1, 2, 3, 4]), np.array([4, 4, 2, 1]), gpis=np.array([1, 2, 3, 4])) ds1 = GriddedTsBase("", grid, TestDataset) datasets = { 'DS1': { 'class': ds1, 'columns': ['soil moisture'], }, 'DS2': { 'class': ds1, 'columns': ['soil moisture'], } } dm = DataManager(datasets, 'DS1') assert dm.datasets == { 'DS1': { 'class': ds1, 'columns': ['soil moisture'], 'args': [], 'kwargs': {}, 'use_lut': False, 'lut_max_dist': None, 'grids_compatible': False }, 'DS2': { 'class': ds1, 'columns': ['soil moisture'], 'args': [], 'kwargs': {}, 'use_lut': False, 'lut_max_dist': None, 'grids_compatible': False } }
def __init__(self, datasets, temporal_matcher, metrics_calculator, data_prep=None, data_post=None, period=None, scaling='lin_cdf_match', scale_to_other=False, cell_based_jobs=True): """ Initialize parameters. """ self.data_manager = DataManager(datasets, data_prep, period) self.temp_matching = temporal_matcher.match self.calc_metrics = metrics_calculator.calc_metrics self.data_postproc = data_post self.scaling = scaling self.scale_to_index = 0 if scale_to_other: self.scale_to_index = 1 self.cell_based_jobs = cell_based_jobs self.luts = self.data_manager.get_luts()
def test_DataManager_get_data(): datasets = setup_TestDatasets() dm = DataManager(datasets, 'DS1') data = dm.get_data(1, 1, 1) assert sorted(list(data)) == ['DS1', 'DS2', 'DS3']
class Validation(object): """ Class for the validation process. Parameters ---------- datasets : dict of dicts, or :py:class:`pytesmo.validation_framework.data_manager.DataManager` :Keys: string, datasets names :Values: dict, containing the following fields 'class': object Class containing the method read_ts for reading the data. 'columns': list List of columns which will be used in the validation process. 'args': list, optional Args for reading the data. 'kwargs': dict, optional Kwargs for reading the data 'grids_compatible': boolean, optional If set to True the grid point index is used directly when reading other, if False then lon, lat is used and a nearest neighbour search is necessary. 'use_lut': boolean, optional If set to True the grid point index (obtained from a calculated lut between reference and other) is used when reading other, if False then lon, lat is used and a nearest neighbour search is necessary. 'lut_max_dist': float, optional Maximum allowed distance in meters for the lut calculation. spatial_ref: string Name of the dataset used as a spatial, temporal and scaling reference. temporal and scaling references can be changed if needed. See the optional parameters ``temporal_ref`` and ``scaling_ref``. metrics_calculators : dict of functions The keys of the dict are tuples with the following structure: (n, k) with n >= 2 and n>=k. n must be equal to the number of datasets now. n is the number of datasets that should be temporally matched to the reference dataset and k is how many columns the metric calculator will get at once. What this means is that it is e.g. possible to temporally match 3 datasets with 3 columns in total and then give the combinations of these columns to the metric calculator in sets of 2 by specifying the dictionary like: .. code:: { (3, 2): metric_calculator} The values are functions that take an input DataFrame with the columns 'ref' for the reference and 'n1', 'n2' and so on for other datasets as well as a dictionary mapping the column names to the names of the original datasets. In this way multiple metric calculators can be applied to different combinations of n input datasets. temporal_matcher: function, optional function that takes a dict of dataframes and a reference_key. It performs the temporal matching on the data and returns a dictionary of matched DataFrames that should be evaluated together by the metric calculator. temporal_window: float, optional Window to allow in temporal matching in days. The window is allowed on both sides of the timestamp of the temporal reference data. Only used with the standard temporal matcher. temporal_ref: string, optional If the temporal matching should use another dataset than the spatial reference as a reference dataset then give the dataset name here. period : list, optional Of type [datetime start, datetime end]. If given then the two input datasets will be truncated to start <= dates <= end. masking_datasets : dict of dictionaries Same format as the datasets with the difference that the read_ts method of these datasets has to return pandas.DataFrames with only boolean columns. True means that the observations at this timestamp should be masked and False means that it should be kept. scaling : string, None or class instance - If set then the data will be scaled into the reference space using the method specified by the string using the :py:class:`pytesmo.validation_framework.data_scalers.DefaultScaler` class. - If set to None then no scaling will be performed. - It can also be set to a class instance that implements a ``scale(self, data, reference_index, gpi_info)`` method. See :py:class:`pytesmo.validation_framework.data_scalers.DefaultScaler` for an example. scaling_ref : string, optional If the scaling should be done to another dataset than the spatial reference then give the dataset name here. Methods ------- calc(job) Takes either a cell or a gpi_info tuple and performs the validation. get_processing_jobs() Returns processing jobs that this process can understand. """ def __init__(self, datasets, spatial_ref, metrics_calculators, temporal_matcher=None, temporal_window=1 / 24.0, temporal_ref=None, masking_datasets=None, period=None, scaling='lin_cdf_match', scaling_ref=None): if type(datasets) is DataManager: self.data_manager = datasets else: self.data_manager = DataManager(datasets, spatial_ref, period) self.temp_matching = temporal_matcher if self.temp_matching is None: self.temp_matching = temporal_matchers.BasicTemporalMatching( window=temporal_window).combinatory_matcher self.temporal_ref = temporal_ref if self.temporal_ref is None: self.temporal_ref = self.data_manager.reference_name self.metrics_c = metrics_calculators for n, k in self.metrics_c: if n < len(self.data_manager.datasets.keys()): raise ValueError('n must be equal to the number of datasets') self.masking_dm = None if masking_datasets is not None: # add temporal reference dataset to the masking datasets since it # is necessary for temporally matching the masking datasets to the # common time stamps. Use _reference here to make a clash with the # names of the masking datasets unlikely masking_datasets.update( {'_reference': datasets[self.temporal_ref]}) self.masking_dm = DataManager(masking_datasets, '_reference', period=period) if type(scaling) == str: self.scaling = DefaultScaler(scaling) else: self.scaling = scaling self.scaling_ref = scaling_ref if self.scaling_ref is None: self.scaling_ref = self.data_manager.reference_name self.luts = self.data_manager.get_luts() def calc(self, gpis, lons, lats, *args): """ The argument iterables (lists or numpy.ndarrays) are processed one after the other in tuples of the form (gpis[n], lons[n], lats[n], arg1[n], ..). Parameters ---------- gpis: iterable The grid point indices is an identificator by which the spatial reference dataset can be read. This is either a list or a numpy.ndarray or any other iterable containing this indicator. lons: iterable Longitudes of the points identified by the gpis. Has to be the same size as gpis. lats: iterable latitudes of the points identified by the gpis. Has to be the same size as gpis. args: iterables any addiational arguments have to have the same size as the gpis iterable. They are given to the metrics calculators as metadata. Common usage is e.g. the long name or network name of an in situ station. Returns ------- compact_results : dict of dicts :Keys: result names, combinations of (referenceDataset.column, otherDataset.column) :Values: dict containing the elements returned by metrics_calculator """ results = {} if len(args) > 0: gpis, lons, lats, args = args_to_iterable(gpis, lons, lats, *args, n=3) else: gpis, lons, lats = args_to_iterable(gpis, lons, lats) for gpi_info in zip(gpis, lons, lats, *args): df_dict = self.data_manager.get_data(gpi_info[0], gpi_info[1], gpi_info[2]) # if no data is available continue with the next gpi if len(df_dict) == 0: continue matched_data, result, used_data = self.perform_validation( df_dict, gpi_info) # add result of one gpi to global results dictionary for r in result: if r not in results: results[r] = [] results[r] = results[r] + result[r] compact_results = {} for key in results.keys(): compact_results[key] = {} for field_name in results[key][0].keys(): entries = [] for result in results[key]: entries.append(result[field_name][0]) compact_results[key][field_name] = \ np.array(entries, dtype=results[key][0][field_name].dtype) return compact_results def perform_validation(self, df_dict, gpi_info): """ Perform the validation for one grid point index and return the matched datasets as well as the calculated metrics. Parameters ---------- df_dict: dict of pandas.DataFrames DataFrames read by the data readers for each dataset gpi_info: tuple tuple of at least, (gpi, lon, lat) Returns ------- matched_n: dict of pandas.DataFrames temporally matched data stored by (n, k) tuples results: dict Dictonary of calculated metrics stored by dataset combinations tuples. used_data: dict The DataFrame used for calculation of each set of metrics. """ results = {} used_data = {} matched_n = {} if self.masking_dm is not None: ref_df = df_dict[self.temporal_ref] masked_ref_df = self.mask_dataset(ref_df, gpi_info) if len(masked_ref_df) == 0: return matched_n, results, used_data df_dict[self.temporal_ref] = masked_ref_df matched_n = self.temporal_match_datasets(df_dict) for n, k in self.metrics_c: n_matched_data = matched_n[(n, k)] if len(n_matched_data) == 0: continue result_names = get_result_combinations(self.data_manager.ds_dict, n=k) for data, result_key in self.k_datasets_from( n_matched_data, result_names): if len(data) == 0: continue # at this stage we can drop the column multiindex and just use # the dataset name if LooseVersion(pd.__version__) < LooseVersion('0.23'): data.columns = data.columns.droplevel(level=1) else: data = data.rename(columns=lambda x: x[0]) if self.scaling is not None: # get scaling index by finding the column in the # DataFrame that belongs to the scaling reference scaling_index = data.columns.tolist().index( self.scaling_ref) try: data = self.scaling.scale(data, scaling_index, gpi_info) except ValueError: continue # Drop the scaling reference if it was not in the intended # results if self.scaling_ref not in [key[0] for key in result_key]: data = data.drop(columns=[self.scaling_ref]) # Rename the columns to 'ref', 'k1', 'k2', ... rename_dict = {} f = lambda x: "k{}".format(x) if x > 0 else 'ref' for i, r in enumerate(result_key): rename_dict[r[0]] = f(i) data.rename(columns=rename_dict, inplace=True) if result_key not in results.keys(): results[result_key] = [] metrics_calculator = self.metrics_c[(n, k)] used_data[result_key] = data metrics = metrics_calculator(data, gpi_info) results[result_key].append(metrics) return matched_n, results, used_data def mask_dataset(self, ref_df, gpi_info): """ Mask the temporal reference dataset with the data read through the masking datasets. Parameters ---------- gpi_info: tuple tuple of at least, (gpi, lon, lat) Returns ------- mask: numpy.ndarray boolean array of the size of the temporal reference read """ matched_masking = self.temporal_match_masking_data(ref_df, gpi_info) # this will only be one element since n is the same as the # number of masking datasets result_names = get_result_names(self.masking_dm.ds_dict, '_reference', n=2) choose_all = pd.DataFrame(index=ref_df.index) for data, result in self.k_datasets_from(matched_masking, result_names, include_scaling_ref=False): if len(data) == 0: continue for key in result: if key[0] != '_reference': # this is necessary since the boolean datatype might have # been changed to float 1.0 and 0.0 issue with temporal # resampling that is not easily resolved since most # datatypes have no nan representation. choose = pd.Series((data[key] == False), index=data.index) choose = choose.reindex(index=choose_all.index, fill_value=True) choose_all[key] = choose.copy() choosing = choose_all.apply(np.all, axis=1) return ref_df[choosing] def temporal_match_masking_data(self, ref_df, gpi_info): """ Temporal match the masking data to the reference DataFrame Parameters ---------- ref_df: pandas.DataFrame Reference data gpi_info: tuple or list contains, (gpi, lon, lat) Returns ------- matched_masking: dict of pandas.DataFrames Contains temporally matched masking data. This dict has only one key being a tuple that contains the matched datasets. """ # read only masking datasets and use the already read reference masking_df_dict = self.masking_dm.get_other_data( gpi_info[0], gpi_info[1], gpi_info[2]) masking_df_dict.update({'_reference': ref_df}) matched_masking = self.temp_matching(masking_df_dict, '_reference', n=2) return matched_masking def temporal_match_datasets(self, df_dict): """ Temporally match all the requested combinations of datasets. Parameters ---------- df_dict: dict of pandas.DataFrames DataFrames read by the data readers for each dataset Returns ------- matched_n: dict of pandas.DataFrames for each (n, k) in the metrics calculators the n temporally matched dataframes """ matched_n = {} for n, k in self.metrics_c: matched_data = self.temp_matching(df_dict, self.temporal_ref, n=n) matched_n[(n, k)] = matched_data return matched_n def k_datasets_from(self, n_matched_data, result_names, include_scaling_ref=True): """ Extract k datasets from n temporally matched ones. This is used to send combinations of k datasets to metrics calculators expecting only k datasets. Parameters ---------- n_matched_data: dict of pandas.DataFrames DataFrames in which n datasets were temporally matched. The key is a tuple of the dataset names. result_names: list result names to extract include_scaling_ref: boolean, optional if set the scaling reference will always be included. Should only be disabled for getting the masking datasets Yields ------ data: pd.DataFrame pandas DataFrame with k columns extracted from the temporally matched datasets result: tuple Tuple describing which datasets and columns are in the returned data. ((dataset_name, column_name), (dataset_name2, column_name2)) """ for result in result_names: result_extract = result if self.scaling is not None and include_scaling_ref: # always make sure the scaling reference is included in the results # otherwise the scaling will fail scaling_ref_column = self.data_manager.datasets[ self.scaling_ref]['columns'][0] scaling_result_name = (self.scaling_ref, scaling_ref_column) if scaling_result_name not in result: result_extract = result + (scaling_result_name, ) data = self.get_data_for_result_tuple(n_matched_data, result_extract) yield data, result def get_data_for_result_tuple(self, n_matched_data, result_tuple): """ Extract a dataframe for a given result tuple from the matched dataframes. Parameters ---------- n_matched_data: dict of pandas.DataFrames DataFrames in which n datasets were temporally matched. The key is a tuple of the dataset names. result_tuple: tuple Tuple describing which datasets and columns should be extracted. ((dataset_name, column_name), (dataset_name2, column_name2)) Returns ------- data: pd.DataFrame pandas DataFrame with columns extracted from the temporally matched datasets """ # find the key into the temporally matched dataset by combining the # dataset parts of the result_names dskey = [] for i, r in enumerate(result_tuple): dskey.append(r[0]) dskey = tuple(dskey) if len(list(n_matched_data)[0]) == len(dskey): # we should have an exact match of datasets and # temporal matches try: # still need to make sure that dskey is in the right order and # contains all the same datasets as the n_matched_data if sorted(dskey) == sorted(list(n_matched_data.keys())[0]): dskey = list(n_matched_data.keys())[0] data = n_matched_data[dskey] except KeyError: # if not then temporal matching between two datasets was # unsuccessful return [] else: # more datasets were temporally matched than are # requested now so we select a temporally matched # dataset that has the first key in common with the # temporal reference. # This guarantees that we only select columns from dataframes for # which the temporal reference dataset was included in the temporal # matching first_match = [ key for key in n_matched_data if self.temporal_ref == key[0] ] found_key = None for key in first_match: for dsk in dskey: if dsk not in key: continue found_key = key data = n_matched_data[found_key] # extract only the relevant columns from matched DataFrame data = data[[x for x in result_tuple]] # drop values if one column is NaN data = data.dropna() return data def get_processing_jobs(self): """ Returns processing jobs that this process can understand. Returns ------- jobs : list List of cells or gpis to process. """ jobs = [] if self.data_manager.reference_grid is not None: if type(self.data_manager.reference_grid) is CellGrid: cells = self.data_manager.reference_grid.get_cells() for cell in cells: (cell_gpis, cell_lons, cell_lats ) = self.data_manager.reference_grid.grid_points_for_cell( cell) jobs.append([cell_gpis, cell_lons, cell_lats]) else: gpis, lons, lats = self.data_manager.reference_grid.get_grid_points( ) jobs = [gpis, lons, lats] return jobs
class Validation(object): """ Class for the validation process. Parameters ---------- datasets : dict of dicts Keys: string, datasets names Values: dict, containing the following fields 'class': object Class containing the method read_ts for reading the data. 'columns': list List of columns which will be used in the validation process. 'type': string 'reference' or 'other'. 'args': list, optional Args for reading the data. 'kwargs': dict, optional Kwargs for reading the data 'grids_compatible': boolean, optional If set to True the grid point index is used directly when reading other, if False then lon, lat is used and a nearest neighbour search is necessary. 'use_lut': boolean, optional If set to True the grid point index (obtained from a calculated lut between reference and other) is used when reading other, if False then lon, lat is used and a nearest neighbour search is necessary. 'lut_max_dist': float, optional Maximum allowed distance in meters for the lut calculation. temporal_matcher: object Class instance that has a match method that takes a reference and a other DataFrame. It's match method should return a DataFrame with the index of the reference DataFrame and all columns of both DataFrames. metrics_calculator : object Class that has a calc_metrics method that takes a pandas.DataFrame with 2 columns named 'ref' and 'other' and returns a dictionary with the calculated metrics. data_prep: object Object that provides the methods prep_reference and prep_other which take the pandas.Dataframe provided by the read_ts methods (plus other_name for prep_other) and do some data preparation on it before temporal matching etc. can be used e.g. for special masking or anomaly calculations. period : list, optional Of type [datetime start, datetime end]. If given then the two input datasets will be truncated to start <= dates <= end. scaling : string If set then the data will be scaled into the reference space using the method specified by the string. scale_to_other : boolean, optional If True the reference dataset is scaled to the other dataset instead of the default behavior. cell_based_jobs : boolean, optional If True then the jobs will be cell based, if false jobs will be tuples of (gpi, lon, lat). Methods ------- calc(job) Takes either a cell or a gpi_info tuple and performs the validation. get_processing_jobs() Returns processing jobs that this process can understand. """ def __init__(self, datasets, temporal_matcher, metrics_calculator, data_prep=None, data_post=None, period=None, scaling='lin_cdf_match', scale_to_other=False, cell_based_jobs=True): """ Initialize parameters. """ self.data_manager = DataManager(datasets, data_prep, period) self.temp_matching = temporal_matcher.match self.calc_metrics = metrics_calculator.calc_metrics self.data_postproc = data_post self.scaling = scaling self.scale_to_index = 0 if scale_to_other: self.scale_to_index = 1 self.cell_based_jobs = cell_based_jobs self.luts = self.data_manager.get_luts() def calc(self, job): """ Takes either a cell or a gpi_info tuple and performs the validation. Parameters ---------- job : object Job of type that self.get_processing_jobs() returns. Returns ------- compact_results : dict of dicts Keys: result names, combinations of (referenceDataset.column, otherDataset.column) Values: dict containing the elements returned by metrics_calculator """ result_names = self.data_manager.get_results_names() results = {} if self.cell_based_jobs: process_gpis, process_lons, process_lats = self.data_manager.\ reference_grid.grid_points_for_cell(job) else: process_gpis, process_lons, process_lats = [ job[0]], [job[1]], [job[2]] for gpi_info in zip(process_gpis, process_lons, process_lats): # if processing is cell based gpi_metainfo is limited to gpi, lon, # lat at the moment if self.cell_based_jobs: gpi_meta = gpi_info else: gpi_meta = job ref_dataframe = self.data_manager.read_reference(gpi_info[0]) # if no reference data available continue with the next gpi if ref_dataframe is None: continue other_dataframes = {} for other_name in self.data_manager.other_name: grids_compatible = self.data_manager.datasets[ other_name]['grids_compatible'] if grids_compatible: other_dataframe = self.data_manager.read_other( other_name, gpi_info[0]) elif self.luts[other_name] is not None: other_gpi = self.luts[other_name][gpi_info[0]] if other_gpi == -1: continue other_dataframe = self.data_manager.read_other( other_name, other_gpi) else: other_dataframe = self.data_manager.read_other( other_name, gpi_info[1], gpi_info[2]) if other_dataframe is not None: other_dataframes[other_name] = other_dataframe # if no other data available continue with the next gpi if len(other_dataframes) == 0: continue joined_data = {} for other in other_dataframes.keys(): joined = self.temp_matching(ref_dataframe, other_dataframes[other]) if len(joined) != 0: joined_data[other] = joined if len(joined_data) == 0: continue # compute results for each combination of (ref, other) columns rescaled_data = {} for result in result_names: ref_col = result[0].split('.')[1] other_col = result[1].split('.')[1] other_name = result[1].split('.')[0] try: data = joined_data[other_name][ [ref_col, other_col]].dropna() except KeyError: continue data.rename( columns={ref_col: 'ref', other_col: 'other'}, inplace=True) if len(data) == 0: continue if self.scaling is not None: try: data = scaling.scale( data, method=self.scaling, reference_index=self.scale_to_index) rescaled_data[other_name] = data except ValueError: continue if result not in results.keys(): results[result] = [] results[result].append(self.calc_metrics(data, gpi_meta)) compact_results = {} for key in results.keys(): compact_results[key] = {} for field_name in results[key][0].keys(): entries = [] for result in results[key]: entries.append(result[field_name][0]) compact_results[key][field_name] = \ np.array(entries, dtype=results[key][0][field_name].dtype) if self.data_postproc is not None: self.data_postproc(compact_results, rescaled_data) return compact_results def get_processing_jobs(self): """ Returns processing jobs that this process can understand. Returns ------- jobs : list List of cells or gpis to process. """ if self.data_manager.reference_grid is not None: if self.cell_based_jobs: return self.data_manager.reference_grid.get_cells() else: return zip(self.data_manager.reference_grid.get_grid_points()) else: return []
def create_pytesmo_validation(validation_run): ds_list = [] ref_name = None scaling_ref_name = None ds_num = 1 for dataset_config in validation_run.dataset_configurations.all(): reader = create_reader(dataset_config.dataset, dataset_config.version) reader = setup_filtering( reader, list(dataset_config.filters.all()), list(dataset_config.parametrisedfilter_set.all()), dataset_config.dataset, dataset_config.variable) if validation_run.anomalies == ValidationRun.MOVING_AVG_35_D: reader = AnomalyAdapter( reader, window_size=35, columns=[dataset_config.variable.pretty_name]) if validation_run.anomalies == ValidationRun.CLIMATOLOGY: # make sure our baseline period is in UTC and without timezone information anomalies_baseline = [ validation_run.anomalies_from.astimezone(tz=pytz.UTC).replace( tzinfo=None), validation_run.anomalies_to.astimezone(tz=pytz.UTC).replace( tzinfo=None) ] reader = AnomalyClimAdapter( reader, columns=[dataset_config.variable.pretty_name], timespan=anomalies_baseline) if (validation_run.reference_configuration and (dataset_config.id == validation_run.reference_configuration.id)): # reference is always named "0-..." dataset_name = '{}-{}'.format(0, dataset_config.dataset.short_name) else: dataset_name = '{}-{}'.format(ds_num, dataset_config.dataset.short_name) ds_num += 1 ds_list.append((dataset_name, { 'class': reader, 'columns': [dataset_config.variable.pretty_name] })) if (validation_run.reference_configuration and (dataset_config.id == validation_run.reference_configuration.id)): ref_name = dataset_name ref_short_name = validation_run.reference_configuration.dataset.short_name if (validation_run.scaling_ref and (dataset_config.id == validation_run.scaling_ref.id)): scaling_ref_name = dataset_name datasets = dict(ds_list) ds_num = len(ds_list) period = None if validation_run.interval_from is not None and validation_run.interval_to is not None: # while pytesmo can't deal with timezones, normalise the validation period to utc; can be removed once pytesmo can do timezones startdate = validation_run.interval_from.astimezone(UTC).replace( tzinfo=None) enddate = validation_run.interval_to.astimezone(UTC).replace( tzinfo=None) period = [startdate, enddate] upscale_parms = None if validation_run.upscaling_method != "none": __logger.debug("Upscaling option is active") upscale_parms = { "upscaling_method": validation_run.upscaling_method, "temporal_stability": validation_run.temporal_stability, } upscaling_lut = create_upscaling_lut( validation_run=validation_run, datasets=datasets, ref_name=ref_name, ) upscale_parms["upscaling_lut"] = upscaling_lut __logger.debug("Lookup table for non-reference datasets " + ", ".join(upscaling_lut.keys()) + " created") __logger.debug("{}".format(upscaling_lut)) datamanager = DataManager( datasets, ref_name=ref_name, period=period, read_ts_names='read', upscale_parms=upscale_parms, ) ds_names = get_dataset_names(datamanager.reference_name, datamanager.datasets, n=ds_num) # set value of the metadata template according to what reference dataset is used if ref_short_name == 'ISMN': metadata_template = METADATA_TEMPLATE['ismn_ref'] else: metadata_template = METADATA_TEMPLATE['other_ref'] pairwise_metrics = PairwiseIntercomparisonMetrics( metadata_template=metadata_template, calc_kendall=False, ) metric_calculators = {(ds_num, 2): pairwise_metrics.calc_metrics} if (len(ds_names) >= 3) and (validation_run.tcol is True): tcol_metrics = TripleCollocationMetrics( ref_name, metadata_template=metadata_template, ) metric_calculators.update({(ds_num, 3): tcol_metrics.calc_metrics}) if validation_run.scaling_method == validation_run.NO_SCALING: scaling_method = None else: scaling_method = validation_run.scaling_method __logger.debug(f"Scaling method: {scaling_method}") __logger.debug(f"Scaling dataset: {scaling_ref_name}") val = Validation(datasets=datamanager, temporal_matcher=make_combined_temporal_matcher( pd.Timedelta(12, "H")), spatial_ref=ref_name, scaling=scaling_method, scaling_ref=scaling_ref_name, metrics_calculators=metric_calculators, period=period) return val
class Validation(object): """ Class for the validation process. Parameters ---------- datasets : dict of dicts, or pytesmo.validation_framwork.data_manager.DataManager Keys: string, datasets names Values: dict, containing the following fields 'class': object Class containing the method read_ts for reading the data. 'columns': list List of columns which will be used in the validation process. 'args': list, optional Args for reading the data. 'kwargs': dict, optional Kwargs for reading the data 'grids_compatible': boolean, optional If set to True the grid point index is used directly when reading other, if False then lon, lat is used and a nearest neighbour search is necessary. 'use_lut': boolean, optional If set to True the grid point index (obtained from a calculated lut between reference and other) is used when reading other, if False then lon, lat is used and a nearest neighbour search is necessary. 'lut_max_dist': float, optional Maximum allowed distance in meters for the lut calculation. spatial_ref: string Name of the dataset used as a spatial, temporal and scaling reference. temporal and scaling references can be changed if needed. See the optional parameters ``temporal_ref`` and ``scaling_ref``. metrics_calculators : dict of functions The keys of the dict are tuples with the following structure: (n, k) with n >= 2 and n>=k. n is the number of datasets that should be temporally matched to the reference dataset and k is how many columns the metric calculator will get at once. What this means is that it is e.g. possible to temporally match 3 datasets with 3 columns in total and then give the combinations of these columns to the metric calculator in sets of 2 by specifying the dictionary like: .. code:: { (3, 2): metric_calculator} The values are functions that take an input DataFrame with the columns 'ref' for the reference and 'n1', 'n2' and so on for other datasets as well as a dictionary mapping the column names to the names of the original datasets. In this way multiple metric calculators can be applied to different combinations of n input datasets. temporal_matcher: function, optional function that takes a dict of dataframes and a reference_key. It performs the temporal matching on the data and returns a dictionary of matched DataFrames that should be evaluated together by the metric calculator. temporal_window: float, optional Window to allow in temporal matching in days. The window is allowed on both sides of the timestamp of the temporal reference data. Only used with the standard temporal matcher. temporal_ref: string, optional If the temporal matching should use another dataset than the spatial reference as a reference dataset then give the dataset name here. period : list, optional Of type [datetime start, datetime end]. If given then the two input datasets will be truncated to start <= dates <= end. masking_datasets : dict of dictionaries Same format as the datasets with the difference that the read_ts method of these datasets has to return pandas.DataFrames with only boolean columns. True means that the observations at this timestamp should be masked and False means that it should be kept. scaling : string, None or class instance - If set then the data will be scaled into the reference space using the method specified by the string using the :py:class:`pytesmo.validation_framework.data_scalers.DefaultScaler` class. - If set to None then no scaling will be performed. - It can also be set to a class instance that implements a ``scale(self, data, reference_index, gpi_info)`` method. See :py:class:`pytesmo.validation_framework.data_scalers.DefaultScaler` for an example. scaling_ref : string, optional If the scaling should be done to another dataset than the spatial reference then give the dataset name here. Methods ------- calc(job) Takes either a cell or a gpi_info tuple and performs the validation. get_processing_jobs() Returns processing jobs that this process can understand. """ def __init__(self, datasets, spatial_ref, metrics_calculators, temporal_matcher=None, temporal_window=1 / 24.0, temporal_ref=None, masking_datasets=None, period=None, scaling='lin_cdf_match', scaling_ref=None): if type(datasets) is DataManager: self.data_manager = datasets else: self.data_manager = DataManager(datasets, spatial_ref, period) self.temp_matching = temporal_matcher if self.temp_matching is None: self.temp_matching = temporal_matchers.BasicTemporalMatching( window=temporal_window).combinatory_matcher self.temporal_ref = temporal_ref if self.temporal_ref is None: self.temporal_ref = self.data_manager.reference_name self.metrics_c = metrics_calculators self.masking_dm = None if masking_datasets is not None: # add temporal reference dataset to the masking datasets since it # is necessary for temporally matching the masking datasets to the # common time stamps. Use _reference here to make a clash with the # names of the masking datasets unlikely masking_datasets.update( {'_reference': datasets[self.temporal_ref]}) self.masking_dm = DataManager(masking_datasets, '_reference', period=period) if type(scaling) == str: self.scaling = DefaultScaler(scaling) else: self.scaling = scaling self.scaling_ref = scaling_ref if self.scaling_ref is None: self.scaling_ref = self.data_manager.reference_name self.luts = self.data_manager.get_luts() def calc(self, gpis, lons, lats, *args): """ The argument iterables (lists or numpy.ndarrays) are processed one after the other in tuples of the form (gpis[n], lons[n], lats[n], arg1[n], ..). Parameters ---------- gpis : iterable The grid point indices is an identificator by which the spatial reference dataset can be read. This is either a list or a numpy.ndarray or any other iterable containing this indicator. lons: iterable Longitudes of the points identified by the gpis. Has to be the same size as gpis. lats: iterable latitudes of the points identified by the gpis. Has to be the same size as gpis. args: iterables any addiational arguments have to have the same size as the gpis iterable. They are given to the metrics calculators as metadata. Common usage is e.g. the long name or network name of an in situ station. Returns ------- compact_results : dict of dicts Keys: result names, combinations of (referenceDataset.column, otherDataset.column) Values: dict containing the elements returned by metrics_calculator """ results = {} if len(args) > 0: gpis, lons, lats, args = args_to_iterable(gpis, lons, lats, *args, n=3) else: gpis, lons, lats = args_to_iterable(gpis, lons, lats) for gpi_info in zip(gpis, lons, lats, *args): df_dict = self.data_manager.get_data(gpi_info[0], gpi_info[1], gpi_info[2]) # if no data is available continue with the next gpi if len(df_dict) == 0: continue matched_data, result, used_data = self.perform_validation( df_dict, gpi_info) # add result of one gpi to global results dictionary for r in result: if r not in results: results[r] = [] results[r] = results[r] + result[r] compact_results = {} for key in results.keys(): compact_results[key] = {} for field_name in results[key][0].keys(): entries = [] for result in results[key]: entries.append(result[field_name][0]) compact_results[key][field_name] = \ np.array(entries, dtype=results[key][0][field_name].dtype) return compact_results def perform_validation(self, df_dict, gpi_info): """ Perform the validation for one grid point index and return the matched datasets as well as the calculated metrics. Parameters ---------- df_dict: dict of pandas.DataFrames DataFrames read by the data readers for each dataset gpi_info: tuple tuple of at least, (gpi, lon, lat) Returns ------- matched_n: dict of pandas.DataFrames temporally matched data stored by (n, k) tuples results: dict Dictonary of calculated metrics stored by dataset combinations tuples. used_data: dict The DataFrame used for calculation of each set of metrics. """ results = {} used_data = {} matched_n = {} if self.masking_dm is not None: ref_df = df_dict[self.temporal_ref] masked_ref_df = self.mask_dataset(ref_df, gpi_info) if len(masked_ref_df) == 0: return matched_n, results, used_data df_dict[self.temporal_ref] = masked_ref_df matched_n = self.temporal_match_datasets(df_dict) for n, k in self.metrics_c: n_matched_data = matched_n[(n, k)] if len(n_matched_data) == 0: continue result_names = get_result_names(self.data_manager.ds_dict, self.temporal_ref, n=k) for data, result_key in self.k_datasets_from(n_matched_data, result_names): if len(data) == 0: continue # at this stage we can drop the column multiindex and just use # the dataset name if LooseVersion(pd.__version__) < LooseVersion('0.23'): data.columns = data.columns.droplevel(level=1) else: data = data.rename(columns=lambda x: x[0]) if self.scaling is not None: # get scaling index by finding the column in the # DataFrame that belongs to the scaling reference scaling_index = data.columns.tolist().index(self.scaling_ref) try: data = self.scaling.scale(data, scaling_index, gpi_info) except ValueError: continue # Rename the columns to 'ref', 'k1', 'k2', ... rename_dict = {} f = lambda x: "k{}".format(x) if x > 0 else 'ref' for i, r in enumerate(result_key): rename_dict[r[0]] = f(i) data.rename(columns=rename_dict, inplace=True) if result_key not in results.keys(): results[result_key] = [] metrics_calculator = self.metrics_c[(n, k)] used_data[result_key] = data metrics = metrics_calculator(data, gpi_info) results[result_key].append(metrics) return matched_n, results, used_data def mask_dataset(self, ref_df, gpi_info): """ Mask the temporal reference dataset with the data read through the masking datasets. Parameters ---------- gpi_info: tuple tuple of at least, (gpi, lon, lat) Returns ------- mask: numpy.ndarray boolean array of the size of the temporal reference read """ matched_masking = self.temporal_match_masking_data(ref_df, gpi_info) # this will only be one element since n is the same as the # number of masking datasets result_names = get_result_names(self.masking_dm.ds_dict, '_reference', n=2) choose_all = pd.DataFrame(index=ref_df.index) for data, result in self.k_datasets_from(matched_masking, result_names): if len(data) == 0: continue for key in result: if key[0] != '_reference': # this is necessary since the boolean datatype might have # been changed to float 1.0 and 0.0 issue with temporal # resampling that is not easily resolved since most # datatypes have no nan representation. choose = pd.Series((data[key] == False), index=data.index) choose = choose.reindex(index=choose_all.index, fill_value=True) choose_all[key] = choose.copy() choosing = choose_all.apply(np.all, axis=1) return ref_df[choosing] def temporal_match_masking_data(self, ref_df, gpi_info): """ Temporal match the masking data to the reference DataFrame Parameters ---------- ref_df: pandas.DataFrame Reference data gpi_info: tuple or list contains, (gpi, lon, lat) Returns ------- matched_masking: dict of pandas.DataFrames Contains temporally matched masking data. This dict has only one key being a tuple that contains the matched datasets. """ # read only masking datasets and use the already read reference masking_df_dict = self.masking_dm.get_other_data(gpi_info[0], gpi_info[1], gpi_info[2]) masking_df_dict.update({'_reference': ref_df}) matched_masking = self.temp_matching(masking_df_dict, '_reference', n=2) return matched_masking def temporal_match_datasets(self, df_dict): """ Temporally match all the requested combinations of datasets. Parameters ---------- df_dict: dict of pandas.DataFrames DataFrames read by the data readers for each dataset Returns ------- matched_n: dict of pandas.DataFrames for each (n, k) in the metrics calculators the n temporally matched dataframes """ matched_n = {} for n, k in self.metrics_c: matched_data = self.temp_matching(df_dict, self.temporal_ref, n=n) matched_n[(n, k)] = matched_data return matched_n def k_datasets_from(self, n_matched_data, result_names): """ Extract k datasets from n temporally matched ones. This is used to send combinations of k datasets to metrics calculators expecting only k datasets. Parameters ---------- n_matched_data: dict of pandas.DataFrames DataFrames in which n datasets were temporally matched. The key is a tuple of the dataset names. result_names: list result names to extract Yields ------ data: pd.DataFrame pandas DataFrame with k columns extracted from the temporally matched datasets result: tuple Tuple describing which datasets and columns are in the returned data. ((dataset_name, column_name), (dataset_name2, column_name2)) """ for result in result_names: data = self.get_data_for_result_tuple(n_matched_data, result) yield data, result def get_data_for_result_tuple(self, n_matched_data, result_tuple): """ Extract a dataframe for a given result tuple from the matched dataframes. Parameters ---------- n_matched_data: dict of pandas.DataFrames DataFrames in which n datasets were temporally matched. The key is a tuple of the dataset names. result_tuple: tuple Tuple describing which datasets and columns should be extracted. ((dataset_name, column_name), (dataset_name2, column_name2)) Returns ------- data: pd.DataFrame pandas DataFrame with columns extracted from the temporally matched datasets """ # find the key into the temporally matched dataset by combining the # dataset parts of the result_names dskey = [] for i, r in enumerate(result_tuple): dskey.append(r[0]) dskey = tuple(dskey) if len(list(n_matched_data)[0]) == len(dskey): # we should have an exact match of datasets and # temporal matches try: data = n_matched_data[dskey] except KeyError: # if not then temporal matching between two datasets was # unsuccessful return [] else: # more datasets were temporally matched than are # requested now so we select a temporally matched # dataset that has the first key in common with the # requested one ensuring that it was used as a # reference and also has the rest of the requested # datasets in the key first_match = [ key for key in n_matched_data if dskey[0] == key[0]] found_key = None for key in first_match: for dsk in dskey[1:]: if dsk not in key: continue found_key = key data = n_matched_data[found_key] # extract only the relevant columns from matched DataFrame data = data[[x for x in result_tuple]] # drop values if one column is NaN data = data.dropna() return data def get_processing_jobs(self): """ Returns processing jobs that this process can understand. Returns ------- jobs : list List of cells or gpis to process. """ jobs = [] if self.data_manager.reference_grid is not None: if type(self.data_manager.reference_grid) is CellGrid: cells = self.data_manager.reference_grid.get_cells() for cell in cells: (cell_gpis, cell_lons, cell_lats) = self.data_manager.reference_grid.grid_points_for_cell(cell) jobs.append([cell_gpis, cell_lons, cell_lats]) else: gpis, lons, lats = self.data_manager.reference_grid.get_grid_points() jobs = [gpis, lons, lats] return jobs
def test_ascat_ismn_validation_metadata_rolling(ascat_reader): """ Test processing framework with some ISMN and ASCAT sample data """ # Initialize ISMN reader ismn_data_folder = os.path.join( os.path.dirname(__file__), "..", "test-data", "ismn", "multinetwork", "header_values", ) ismn_reader = ISMN_Interface(ismn_data_folder) jobs = [] ids = ismn_reader.get_dataset_ids( variable="soil moisture", min_depth=0, max_depth=0.1 ) metadata_dict_template = { "network": np.array(["None"], dtype="U256"), "station": np.array(["None"], dtype="U256"), "landcover": np.float32([np.nan]), "climate": np.array(["None"], dtype="U4"), } for idx in ids: metadata = ismn_reader.metadata[idx] metadata_dict = [ { "network": metadata["network"], "station": metadata["station"], "landcover": metadata["landcover_2010"], "climate": metadata["climate"], } ] jobs.append( (idx, metadata["longitude"], metadata["latitude"], metadata_dict) ) save_path = tempfile.mkdtemp() # Create the validation object. datasets = { "ISMN": {"class": ismn_reader, "columns": ["soil moisture"]}, "ASCAT": { "class": ascat_reader, "columns": ["sm"], "kwargs": { "mask_frozen_prob": 80, "mask_snow_prob": 80, "mask_ssf": True, }, }, } read_ts_names = {"ASCAT": "read", "ISMN": "read_ts"} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager( datasets, "ISMN", period, read_ts_names=read_ts_names ) process = Validation( datasets, "ISMN", temporal_ref="ASCAT", scaling="lin_cdf_match", scaling_ref="ASCAT", metrics_calculators={ (2, 2): metrics_calculators.RollingMetrics( other_name="k1", metadata_template=metadata_dict_template ).calc_metrics }, period=period, ) for job in jobs: results = process.calc(*job) netcdf_results_manager( results, save_path, ts_vars=["R", "p_R", "RMSD"] ) results_fname = os.path.join( save_path, "ASCAT.sm_with_ISMN.soil moisture.nc" ) vars_should = [ u"gpi", u"lon", u"lat", u"R", u"p_R", u"time", u"idx", u"_row_size", ] for key, value in metadata_dict_template.items(): vars_should.append(key) network_should = np.array( [ "MAQU", "MAQU", "SCAN", "SCAN", "SCAN", "SOILSCAPE", "SOILSCAPE", "SOILSCAPE", ], dtype="U256", ) reader = PointDataResults(results_fname, read_only=True) df = reader.read_loc(None) nptest.assert_equal(sorted(network_should), sorted(df["network"].values)) assert np.all(df.gpi.values == np.arange(8)) assert reader.read_ts(0).index.size == 357 assert np.all( reader.read_ts(1).columns.values == np.array(["R", "p_R", "RMSD"]) )
def test_ascat_ismn_validation(ascat_reader, ismn_reader): """ Test processing framework with some ISMN and ASCAT sample data """ jobs = [] ids = ismn_reader.get_dataset_ids(variable="soil moisture", min_depth=0, max_depth=0.1) for idx in ids: metadata = ismn_reader.metadata[idx] jobs.append((idx, metadata["longitude"], metadata["latitude"])) # Create the variable ***save_path*** which is a string representing the # path where the results will be saved. **DO NOT CHANGE** the name # ***save_path*** because it will be searched during the parallel # processing! save_path = tempfile.mkdtemp() # Create the validation object. datasets = { "ISMN": { "class": ismn_reader, "columns": ["soil moisture"] }, "ASCAT": { "class": ascat_reader, "columns": ["sm"], "kwargs": { "mask_frozen_prob": 80, "mask_snow_prob": 80, "mask_ssf": True, }, }, } read_ts_names = {"ASCAT": "read", "ISMN": "read_ts"} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager(datasets, "ISMN", period, read_ts_names=read_ts_names) process = Validation( datasets, "ISMN", temporal_ref="ASCAT", scaling="lin_cdf_match", scaling_ref="ASCAT", metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics(other_name="k1").calc_metrics }, period=period, ) for job in jobs: results = process.calc(*job) netcdf_results_manager(results, save_path) results_fname = os.path.join(save_path, "ASCAT.sm_with_ISMN.soil moisture.nc") # targets target_vars = { "n_obs": [357, 384, 1646, 1875, 1915, 467, 141, 251], "rho": np.array([ 0.53934574, 0.7002289, 0.62200236, 0.53647155, 0.30413666, 0.6740655, 0.8418981, 0.74206454 ], dtype=np.float32), "RMSD": np.array([ 11.583476, 7.729667, 17.441547, 21.125721, 14.31557, 14.187225, 13.0622425, 12.903898 ], dtype=np.float32) } check_results( filename=results_fname, target_vars=target_vars, )
def test_ascat_ismn_validation_metadata(ascat_reader, ismn_reader): """ Test processing framework with some ISMN and ASCAT sample data """ jobs = [] ids = ismn_reader.get_dataset_ids(variable="soil moisture", min_depth=0, max_depth=0.1) metadata_dict_template = { "network": np.array(["None"], dtype="U256"), "station": np.array(["None"], dtype="U256"), "landcover": np.float32([np.nan]), "climate": np.array(["None"], dtype="U4"), } for idx in ids: metadata = ismn_reader.metadata[idx] metadata_dict = [{ "network": metadata["network"], "station": metadata["station"], "landcover": metadata["landcover_2010"], "climate": metadata["climate"], }] jobs.append( (idx, metadata["longitude"], metadata["latitude"], metadata_dict)) # Create the variable ***save_path*** which is a string representing the # path where the results will be saved. **DO NOT CHANGE** the name # ***save_path*** because it will be searched during the parallel # processing! save_path = tempfile.mkdtemp() # Create the validation object. datasets = { "ISMN": { "class": ismn_reader, "columns": ["soil moisture"], }, "ASCAT": { "class": ascat_reader, "columns": ["sm"], "kwargs": { "mask_frozen_prob": 80, "mask_snow_prob": 80, "mask_ssf": True, }, }, } read_ts_names = {"ASCAT": "read", "ISMN": "read_ts"} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager(datasets, "ISMN", period, read_ts_names=read_ts_names) process = Validation( datasets, "ISMN", temporal_ref="ASCAT", scaling="lin_cdf_match", scaling_ref="ASCAT", metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics( other_name="k1", metadata_template=metadata_dict_template).calc_metrics }, period=period, ) for job in jobs: results = process.calc(*job) netcdf_results_manager(results, save_path) results_fname = os.path.join(save_path, "ASCAT.sm_with_ISMN.soil moisture.nc") target_vars = { "n_obs": [357, 384, 1646, 1875, 1915, 467, 141, 251], "rho": np.array([ 0.53934574, 0.7002289, 0.62200236, 0.53647155, 0.30413666, 0.6740655, 0.8418981, 0.74206454, ], dtype=np.float32), "RMSD": np.array([ 11.583476, 7.729667, 17.441547, 21.125721, 14.31557, 14.187225, 13.0622425, 12.903898, ], dtype=np.float32), "network": np.array( [ "MAQU", "MAQU", "SCAN", "SCAN", "SCAN", "SOILSCAPE", "SOILSCAPE", "SOILSCAPE", ], dtype="U256", ) } vars_should = [ 'BIAS', 'R', 'RMSD', '_row_size', 'climate', 'gpi', 'idx', 'landcover', 'lat', 'lon', 'n_obs', 'network', 'p_R', 'p_rho', 'p_tau', 'rho', 'station', 'tau', 'time' ] check_results(filename=results_fname, target_vars=target_vars, variables=vars_should)
def test_validation_with_averager(ascat_reader, ismn_reader): """ Test processing framework with averaging module. ASCAT and ISMN data are used here with no geographical considerations (the lut is provided more upstream and contains this information already) """ while hasattr(ascat_reader, 'cls'): ascat_reader = ascat_reader.cls # lookup table between the ascat and ismn points - not geographically correct upscaling_lut = { "ISMN": { 1814367: [(0, 102.1333, 33.8833), (1, 102.1333, 33.6666)], 1803695: [(2, -86.55, 34.783), (3, -97.083, 37.133), (4, -105.417, 34.25)], 1856312: [(5, -120.9675, 38.43003), (6, -120.78559, 38.14956), (7, -120.80639, 38.17353)] } } gpis = (1814367, 1803695, 1856312) lons, lats = [], [] for gpi in gpis: lon, lat = ascat_reader.grid.gpi2lonlat(gpi) lons.append(lon) lats.append(lat) jobs = [(gpis, lons, lats)] # Create the variable ***save_path*** which is a string representing the # path where the results will be saved. **DO NOT CHANGE** the name # ***save_path*** because it will be searched during the parallel # processing! save_path = tempfile.mkdtemp() # Create the validation object. datasets = { "ASCAT": { "class": ascat_reader, "columns": ["sm"], "kwargs": { "mask_frozen_prob": 80, "mask_snow_prob": 80, "mask_ssf": True, } }, "ISMN": { "class": ismn_reader, "columns": ["soil moisture"], }, } read_ts_names = {"ASCAT": "read", "ISMN": "read_ts"} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager( datasets, "ASCAT", period, read_ts_names=read_ts_names, upscale_parms={ "upscaling_method": "average", "temporal_stability": True, "upscaling_lut": upscaling_lut, }, ) process = Validation( datasets, "ASCAT", temporal_ref="ISMN", scaling="lin_cdf_match", scaling_ref="ISMN", metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics(other_name="k1").calc_metrics }, period=period, ) for job in jobs: results = process.calc(*job) netcdf_results_manager(results, save_path) results_fname = os.path.join(save_path, "ASCAT.sm_with_ISMN.soil moisture.nc") target_vars = { "n_obs": [764, 2392, 904], "rho": np.array([-0.012487, 0.255156, 0.635517], dtype=np.float32), "RMSD": np.array([0.056428, 0.056508, 0.116294], dtype=np.float32), "R": np.array([-0.012335, 0.257671, 0.657239], dtype=np.float32) } check_results( filename=results_fname, target_vars=target_vars, )
def test_ascat_ismn_validation(): """ Test processing framework with some ISMN and ASCAT sample data """ ascat_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'sat', 'ascat', 'netcdf', '55R22') ascat_grid_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'sat', 'ascat', 'netcdf', 'grid') static_layers_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'sat', 'h_saf', 'static_layer') ascat_reader = AscatSsmCdr(ascat_data_folder, ascat_grid_folder, grid_filename='TUW_WARP5_grid_info_2_1.nc', static_layer_path=static_layers_folder) ascat_reader.read_bulk = True # Initialize ISMN reader ismn_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'ismn', 'multinetwork', 'header_values') ismn_reader = ISMN_Interface(ismn_data_folder) jobs = [] ids = ismn_reader.get_dataset_ids(variable='soil moisture', min_depth=0, max_depth=0.1) for idx in ids: metadata = ismn_reader.metadata[idx] jobs.append((idx, metadata['longitude'], metadata['latitude'])) # Create the variable ***save_path*** which is a string representing the # path where the results will be saved. **DO NOT CHANGE** the name # ***save_path*** because it will be searched during the parallel # processing! save_path = tempfile.mkdtemp() # Create the validation object. datasets = { 'ISMN': { 'class': ismn_reader, 'columns': ['soil moisture'] }, 'ASCAT': { 'class': ascat_reader, 'columns': ['sm'], 'kwargs': { 'mask_frozen_prob': 80, 'mask_snow_prob': 80, 'mask_ssf': True } } } read_ts_names = {'ASCAT': 'read', 'ISMN': 'read_ts'} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager(datasets, 'ISMN', period, read_ts_names=read_ts_names) process = Validation( datasets, 'ISMN', temporal_ref='ASCAT', scaling='lin_cdf_match', scaling_ref='ASCAT', metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics(other_name='k1').calc_metrics }, period=period) for job in jobs: results = process.calc(*job) netcdf_results_manager(results, save_path) results_fname = os.path.join(save_path, 'ASCAT.sm_with_ISMN.soil moisture.nc') vars_should = [ u'n_obs', u'tau', u'gpi', u'RMSD', u'lon', u'p_tau', u'BIAS', u'p_rho', u'rho', u'lat', u'R', u'p_R', u'time', u'idx', u'_row_size' ] n_obs_should = [384, 357, 482, 141, 251, 1927, 1887, 1652] rho_should = np.array([ 0.70022893, 0.53934574, 0.69356072, 0.84189808, 0.74206454, 0.30299741, 0.53143877, 0.62204134 ], dtype=np.float32) rmsd_should = np.array([ 7.72966719, 11.58347607, 14.57700157, 13.06224251, 12.90389824, 14.24668026, 21.19682884, 17.3883934 ], dtype=np.float32) with nc.Dataset(results_fname, mode='r') as results: assert sorted(list(results.variables.keys())) == sorted(vars_should) assert sorted( results.variables['n_obs'][:].tolist()) == sorted(n_obs_should) nptest.assert_allclose(sorted(rho_should), sorted(results.variables['rho'][:]), rtol=1e-4) nptest.assert_allclose(sorted(rmsd_should), sorted(results.variables['RMSD'][:]), rtol=1e-4)
def create_pytesmo_validation(validation_run): ds_list = [] ref_name = None scaling_ref_name = None ds_num = 1 for dataset_config in validation_run.dataset_configurations.all(): reader = create_reader(dataset_config.dataset, dataset_config.version) reader = setup_filtering( reader, list(dataset_config.filters.all()), list(dataset_config.parametrisedfilter_set.all()), dataset_config.dataset, dataset_config.variable) if validation_run.anomalies == ValidationRun.MOVING_AVG_35_D: reader = AnomalyAdapter( reader, window_size=35, columns=[dataset_config.variable.pretty_name]) if validation_run.anomalies == ValidationRun.CLIMATOLOGY: # make sure our baseline period is in UTC and without timezone information anomalies_baseline = [ validation_run.anomalies_from.astimezone(tz=pytz.UTC).replace( tzinfo=None), validation_run.anomalies_to.astimezone(tz=pytz.UTC).replace( tzinfo=None) ] reader = AnomalyClimAdapter( reader, columns=[dataset_config.variable.pretty_name], timespan=anomalies_baseline) if ((validation_run.reference_configuration) and (dataset_config.id == validation_run.reference_configuration.id)): # reference is always named "0-..." dataset_name = '{}-{}'.format(0, dataset_config.dataset.short_name) else: dataset_name = '{}-{}'.format(ds_num, dataset_config.dataset.short_name) ds_num += 1 ds_list.append((dataset_name, { 'class': reader, 'columns': [dataset_config.variable.pretty_name] })) if ((validation_run.reference_configuration) and (dataset_config.id == validation_run.reference_configuration.id)): ref_name = dataset_name if ((validation_run.scaling_ref) and (dataset_config.id == validation_run.scaling_ref.id)): scaling_ref_name = dataset_name datasets = dict(ds_list) ds_num = len(ds_list) period = None if validation_run.interval_from is not None and validation_run.interval_to is not None: ## while pytesmo can't deal with timezones, normalise the validation period to utc; can be removed once pytesmo can do timezones startdate = validation_run.interval_from.astimezone(UTC).replace( tzinfo=None) enddate = validation_run.interval_to.astimezone(UTC).replace( tzinfo=None) period = [startdate, enddate] datamanager = DataManager(datasets, ref_name=ref_name, period=period, read_ts_names='read') ds_names = get_dataset_names(datamanager.reference_name, datamanager.datasets, n=ds_num) if (len(ds_names) >= 3) and (validation_run.tcol is True): # if there are 3 or more dataset, do TC, exclude ref metrics metrics = TCMetrics( dataset_names=ds_names, tc_metrics_for_ref=False, other_names=['k{}'.format(i + 1) for i in range(ds_num - 1)]) else: metrics = IntercomparisonMetrics( dataset_names=ds_names, other_names=['k{}'.format(i + 1) for i in range(ds_num - 1)]) if validation_run.scaling_method == validation_run.NO_SCALING: scaling_method = None else: scaling_method = validation_run.scaling_method __logger.debug(f"Scaling method: {scaling_method}") __logger.debug(f"Scaling dataset: {scaling_ref_name}") val = Validation(datasets=datamanager, spatial_ref=ref_name, temporal_window=0.5, scaling=scaling_method, scaling_ref=scaling_ref_name, metrics_calculators={ (ds_num, ds_num): metrics.calc_metrics }, period=period) return val
def test_ascat_ismn_validation_metadata_rolling(): """ Test processing framework with some ISMN and ASCAT sample data """ ascat_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'sat', 'ascat', 'netcdf', '55R22') ascat_grid_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'sat', 'ascat', 'netcdf', 'grid') static_layers_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'sat', 'h_saf', 'static_layer') ascat_reader = AscatSsmCdr(ascat_data_folder, ascat_grid_folder, grid_filename='TUW_WARP5_grid_info_2_1.nc', static_layer_path=static_layers_folder) ascat_reader.read_bulk = True # Initialize ISMN reader ismn_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data', 'ismn', 'multinetwork', 'header_values') ismn_reader = ISMN_Interface(ismn_data_folder) jobs = [] ids = ismn_reader.get_dataset_ids(variable='soil moisture', min_depth=0, max_depth=0.1) metadata_dict_template = { 'network': np.array(['None'], dtype='U256'), 'station': np.array(['None'], dtype='U256'), 'landcover': np.float32([np.nan]), 'climate': np.array(['None'], dtype='U4') } for idx in ids: metadata = ismn_reader.metadata[idx] metadata_dict = [{ 'network': metadata['network'], 'station': metadata['station'], 'landcover': metadata['landcover_2010'], 'climate': metadata['climate'] }] jobs.append( (idx, metadata['longitude'], metadata['latitude'], metadata_dict)) save_path = tempfile.mkdtemp() # Create the validation object. datasets = { 'ISMN': { 'class': ismn_reader, 'columns': ['soil moisture'] }, 'ASCAT': { 'class': ascat_reader, 'columns': ['sm'], 'kwargs': { 'mask_frozen_prob': 80, 'mask_snow_prob': 80, 'mask_ssf': True } } } read_ts_names = {'ASCAT': 'read', 'ISMN': 'read_ts'} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager(datasets, 'ISMN', period, read_ts_names=read_ts_names) process = Validation( datasets, 'ISMN', temporal_ref='ASCAT', scaling='lin_cdf_match', scaling_ref='ASCAT', metrics_calculators={ (2, 2): metrics_calculators.RollingMetrics( other_name='k1', metadata_template=metadata_dict_template).calc_metrics }, period=period) for job in jobs: results = process.calc(*job) netcdf_results_manager(results, save_path, ts_vars=['R', 'p_R', 'RMSD']) results_fname = os.path.join(save_path, 'ASCAT.sm_with_ISMN.soil moisture.nc') vars_should = [ u'gpi', u'lon', u'lat', u'R', u'p_R', u'time', u'idx', u'_row_size' ] for key, value in metadata_dict_template.items(): vars_should.append(key) network_should = np.array([ 'MAQU', 'MAQU', 'SCAN', 'SCAN', 'SCAN', 'SOILSCAPE', 'SOILSCAPE', 'SOILSCAPE' ], dtype='U256') reader = PointDataResults(results_fname, read_only=True) df = reader.read_loc(None) nptest.assert_equal(sorted(network_should), sorted(df['network'].values)) assert np.all(df.gpi.values == np.arange(8)) assert (reader.read_ts(0).index.size == 357) assert np.all( reader.read_ts(1).columns.values == np.array(['R', 'p_R', 'RMSD']))
def test_ascat_ismn_validation_metadata(ascat_reader): """ Test processing framework with some ISMN and ASCAT sample data """ # Initialize ISMN reader ismn_data_folder = os.path.join( os.path.dirname(__file__), "..", "test-data", "ismn", "multinetwork", "header_values", ) ismn_reader = ISMN_Interface(ismn_data_folder) jobs = [] ids = ismn_reader.get_dataset_ids( variable="soil moisture", min_depth=0, max_depth=0.1 ) metadata_dict_template = { "network": np.array(["None"], dtype="U256"), "station": np.array(["None"], dtype="U256"), "landcover": np.float32([np.nan]), "climate": np.array(["None"], dtype="U4"), } for idx in ids: metadata = ismn_reader.metadata[idx] metadata_dict = [ { "network": metadata["network"], "station": metadata["station"], "landcover": metadata["landcover_2010"], "climate": metadata["climate"], } ] jobs.append( (idx, metadata["longitude"], metadata["latitude"], metadata_dict) ) # Create the variable ***save_path*** which is a string representing the # path where the results will be saved. **DO NOT CHANGE** the name # ***save_path*** because it will be searched during the parallel # processing! save_path = tempfile.mkdtemp() # Create the validation object. datasets = { "ISMN": { "class": ismn_reader, "columns": ["soil moisture"], }, "ASCAT": { "class": ascat_reader, "columns": ["sm"], "kwargs": { "mask_frozen_prob": 80, "mask_snow_prob": 80, "mask_ssf": True, }, }, } read_ts_names = {"ASCAT": "read", "ISMN": "read_ts"} period = [datetime(2007, 1, 1), datetime(2014, 12, 31)] datasets = DataManager( datasets, "ISMN", period, read_ts_names=read_ts_names ) process = Validation( datasets, "ISMN", temporal_ref="ASCAT", scaling="lin_cdf_match", scaling_ref="ASCAT", metrics_calculators={ (2, 2): metrics_calculators.BasicMetrics( other_name="k1", metadata_template=metadata_dict_template ).calc_metrics }, period=period, ) for job in jobs: results = process.calc(*job) netcdf_results_manager(results, save_path) results_fname = os.path.join( save_path, "ASCAT.sm_with_ISMN.soil moisture.nc" ) vars_should = [ u"n_obs", u"tau", u"gpi", u"RMSD", u"lon", u"p_tau", u"BIAS", u"p_rho", u"rho", u"lat", u"R", u"p_R", u"time", u"idx", u"_row_size", ] for key, value in metadata_dict_template.items(): vars_should.append(key) n_obs_should = [357, 384, 1646, 1875, 1915, 467, 141, 251] rho_should = np.array( [ 0.53934574, 0.7002289, 0.62200236, 0.53647155, 0.30413666, 0.6740655, 0.8418981, 0.74206454, ], dtype=np.float32, ) rmsd_should = np.array( [ 11.583476, 7.729667, 17.441547, 21.125721, 14.31557, 14.187225, 13.0622425, 12.903898, ], dtype=np.float32, ) network_should = np.array( [ "MAQU", "MAQU", "SCAN", "SCAN", "SCAN", "SOILSCAPE", "SOILSCAPE", "SOILSCAPE", ], dtype="U256", ) with nc.Dataset(results_fname, mode="r") as results: vars = results.variables.keys() n_obs = results.variables["n_obs"][:].tolist() rho = results.variables["rho"][:] rmsd = results.variables["RMSD"][:] network = results.variables["network"][:] assert sorted(vars) == sorted(vars_should) assert sorted(n_obs) == sorted(n_obs_should) nptest.assert_allclose(sorted(rho), sorted(rho_should), rtol=1e-4) nptest.assert_allclose(sorted(rmsd), sorted(rmsd_should), rtol=1e-4) nptest.assert_equal(sorted(network), sorted(network_should))
def getdata(): """ handles the get request, which should contain the arguments listes under parameters Parameters ---------- station_id: int id of station in database scaling: string chosen scaling method , for available choices see general.times_eries.scaling snow_depth: float mask snow depth greater than this value st_l1: float mask surface temperature layer1 lower than this value air_temp: float mask 2m air temperature lower than this value ssf_masking: boolean use SSF for masking true or false """ station_id = request.args.get('station_id') scaling = request.args.get('scaling') if scaling == 'noscale': scaling = None masking_ids = request.args.getlist('masking_ds[]') masking_ops = request.args.getlist('masking_op[]') masking_values = request.args.getlist('masking_values[]') masking_values = [float(x) for x in masking_values] anomaly = request.args.get('anomaly') if anomaly == 'none': anomaly = None (depth_from, depth_to, sensor_id) = get_station_first_sm_layer(app.config['ISMN_PATH'], station_id) lon, lat = get_station_lonlat(app.config['ISMN_PATH'], station_id) start, end = get_station_start_end(app.config['ISMN_PATH'], station_id, "soil moisture", depth_from, depth_to) period = [start, end] masking_data = {'labels': [], 'data': []} masking_meta = get_masking_metadata() masking_masked_dict = None if len(masking_ids) > 0: # prepare masking datasets masking_ds_dict = get_masking_ds_dict(masking_ids) masking_masked_dict = {} for masking_ds, masking_op, masking_value in zip(masking_ids, masking_ops, masking_values): masking_masked_dict[masking_ds] = dict(masking_ds_dict[masking_ds]) new_cls = MaskingAdapter(masking_masked_dict[masking_ds]['class'], masking_op, masking_value) masking_masked_dict[masking_ds]['class'] = new_cls # use DataManager for reading masking datasets masking_dm = DataManager(masking_ds_dict, masking_ids[0], period=period) masking_data = {} valid_masking_ids = [] for mds in masking_ids: mdata = masking_dm.read_ds(mds, lon, lat) if mdata is not None: masking_data[mds] = mdata valid_masking_ids.append(mds) else: masking_data[mds] = pd.DataFrame() if len(valid_masking_ids) > 1: masking_data = BasicTemporalMatching(window=1.0).combinatory_matcher( masking_data, masking_ids[0], n=len(masking_ids)) if len(masking_data) > 0: labels, values = masking_data[ masking_data.keys()[0]].to_dygraph_format() elif len(valid_masking_ids) == 1: masking_data = masking_data[valid_masking_ids[0]] labels, values = masking_data.to_dygraph_format() else: labels = [None] values = None for i, label in enumerate(labels): for mid in masking_meta: if masking_meta[mid]['variable']['name'] in label: labels[i] = masking_meta[mid]['long_name'] masking_data = {'labels': labels, 'data': values} ismn_iface = prepare_station_interface(app.config['ISMN_PATH'], station_id, "soil moisture", depth_from, depth_to, sensor_id) validation_ds_dict = get_validation_ds_dict() validation_ds_dict.update({'ISMN': {'class': ismn_iface, 'columns': ['soil moisture']}}) if anomaly is not None: adapter = {'climatology': AnomalyClimAdapter, 'average': AnomalyAdapter} for dataset in validation_ds_dict: validation_ds_dict[dataset]['class'] = adapter[ anomaly](validation_ds_dict[dataset]['class'], columns=validation_ds_dict[dataset]['columns']) mcalc = BasicMetricsPlusMSE(other_name='k1', calc_tau=True).calc_metrics process = Validation(validation_ds_dict, 'ISMN', temporal_ref='cci', scaling=scaling, metrics_calculators={(2, 2): mcalc}, masking_datasets=masking_masked_dict, period=period, temporal_window=1) df_dict = process.data_manager.get_data(1, lon, lat) matched_data, result, used_data = process.perform_validation( df_dict, (1, lon, lat)) res_key = list(result)[0] data = used_data[res_key] result = result[res_key][0] # rename data to original names rename_dict = {} f = lambda x: "k{}".format(x) if x > 0 else 'ref' for i, r in enumerate(res_key): rename_dict[f(i)] = " ".join(r) data.rename(columns=rename_dict, inplace=True) labels, values = data.to_dygraph_format() validation_datasets = {'labels': labels, 'data': values} statistics = {'kendall': {'v': '%.2f' % result['tau'], 'p': '%.4f' % result['p_tau']}, 'spearman': {'v': '%.2f' % result['rho'], 'p': '%.4f' % result['p_rho']}, 'pearson': {'v': '%.2f' % result['R'], 'p': '%.4f' % result['p_R']}, 'bias': '%.4f' % result['BIAS'], 'rmsd': {'rmsd': '%.4f' % np.sqrt(result['mse']), 'rmsd_corr': '%.4f' % np.sqrt(result['mse_corr']), 'rmsd_bias': '%.4f' % np.sqrt(result['mse_bias']), 'rmsd_var': '%.4f' % np.sqrt(result['mse_var'])}, 'mse': {'mse': '%.4f' % result['mse'], 'mse_corr': '%.4f' % result['mse_corr'], 'mse_bias': '%.4f' % result['mse_bias'], 'mse_var': '%.4f' % result['mse_var']}} scaling_options = {'noscale': 'No scaling', 'porosity': 'Scale using porosity', 'linreg': 'Linear Regression', 'mean_std': 'Mean - standard deviation', 'min_max': 'Minimum,maximum', 'lin_cdf_match': 'Piecewise <br> linear CDF matching', 'cdf_match': 'CDF matching'} if scaling is None: scaling = 'noscale' masking_option_return = {} for mid, mops, mval in zip(masking_ids, masking_ops, masking_values): masking_option_return[mid] = {'op': mops, 'val': mval, 'name': masking_meta[mid]['long_name']} settings = {'scaling': scaling_options[scaling], 'masking': masking_option_return} output_data = {'validation_data': validation_datasets, 'masking_data': masking_data, 'statistics': statistics, 'settings': settings} status = 1 if status == -1: data = 'Error' else: data = jsonify(output_data) resp = make_response(data) resp.headers['Access-Control-Allow-Origin'] = '*' return resp