def test_BasicSeasonalMetrics(): """ Test BasicSeasonalMetrics. """ df = make_some_data() data = df[['ref', 'k1']] metriccalc = MonthsMetricsAdapter(BasicMetrics(other_name='k1')) res = metriccalc.calc_metrics(data, gpi_info=(0, 0, 0)) should = dict(ALL_n_obs=np.array([366]), dtype='float32') assert res['ALL_n_obs'] == should['ALL_n_obs'] assert np.isnan(res['ALL_rho'])
def test_BasicSeasonalMetrics_metadata(): """ Test BasicSeasonalMetrics with metadata. """ df = make_some_data() data = df[['ref', 'k1']] metadata_dict_template = {'network': np.array(['None'], dtype='U256')} metriccalc = MonthsMetricsAdapter(BasicMetrics( other_name='k1', metadata_template=metadata_dict_template)) res = metriccalc.calc_metrics( data, gpi_info=(0, 0, 0, {'network': 'SOILSCAPE'})) assert res['network'] == np.array(['SOILSCAPE'], dtype='U256')
def test_BasicSeasonalMetrics(): """ Test BasicSeasonalMetrics. """ df = make_some_data() data = df[['ref', 'k1']] with warnings.catch_warnings(): warnings.simplefilter("ignore") # many warnings due to test data metriccalc = MonthsMetricsAdapter(BasicMetrics(other_name='k1')) res = metriccalc.calc_metrics(data, gpi_info=(0, 0, 0)) should = dict(ALL_n_obs=np.array([366]), dtype='float32') assert res['ALL_n_obs'] == should['ALL_n_obs'] assert np.isnan(res['ALL_rho'])