예제 #1
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        """
        Create the task from config, and optionally load metadata/model_state
        This function will create components including :class:`~DataHandler`,
        :class:`~Trainer`, :class:`~MetricReporter`,
        :class:`~Exporter`, and wire them up.

        Args:
            task_config (Task.Config): the config of the current task
            metadata: saved global context of this task, e.g: vocabulary, will be
                generated by :class:`~DataHandler` if it's None
            model_state: saved model parameters, will be loaded into model when given
        """
        if hasattr(task_config.labels, "target_prob"):
            assert task_config.labels.target_prob == isinstance(
                task_config.model.output_layer.loss,
                (
                    KLDivergenceBCELoss.Config,
                    KLDivergenceCELoss.Config,
                    SoftHardBCELoss.Config,
                ),
            ), "target_prob must be set to True for KD losses"
        featurizer = create_featurizer(task_config.featurizer,
                                       task_config.features)
        # load data
        data_handler = create_data_handler(
            task_config.data_handler,
            task_config.features,
            task_config.labels,
            featurizer=featurizer,
        )
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata

        model = create_model(task_config.model, task_config.features, metadata)
        if model_state:
            model.load_state_dict(model_state)
        if cuda.CUDA_ENABLED:
            model = model.cuda()
        metric_reporter = create_metric_reporter(task_config.metric_reporter,
                                                 metadata)
        exporter = (create_exporter(
            task_config.exporter,
            task_config.features,
            task_config.labels,
            data_handler.metadata,
            task_config.model,
        ) if task_config.exporter else None)
        return cls(
            trainer=create_trainer(task_config.trainer, model),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            exporter=exporter,
        )
예제 #2
0
    def _create_dummy_data_handler(self):
        feat = WordFeatConfig(
            vocab_size=4,
            vocab_from_all_data=True,
            vocab_from_train_data=True,
            vocab_from_pretrained_embeddings=False,
            pretrained_embeddings_path=None,
        )
        featurizer = create_featurizer(SimpleFeaturizer.Config(),
                                       FeatureConfig(word_feat=feat))
        data_handler = DocClassificationDataHandler.from_config(
            DocClassificationDataHandler.Config(),
            ModelInputConfig(word_feat=feat),
            TargetConfig(),
            featurizer=featurizer,
        )
        train_data = data_handler.gen_dataset([{
            "text": "<pad>"
        }],
                                              include_label_fields=False)
        eval_data = data_handler.gen_dataset([{
            "text": "<pad>"
        }],
                                             include_label_fields=False)
        test_data = data_handler.gen_dataset([{
            "text": "<pad>"
        }],
                                             include_label_fields=False)
        data_handler.init_feature_metadata(train_data, eval_data, test_data)

        return data_handler
예제 #3
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        """
        Create the task from config, and optionally load metadata/model_state
        This function will create components including :class:`~DataHandler`,
        :class:`~Trainer`, :class:`~Optimizer`, :class:`~Scheduler`,
        :class:`~MetricReporter`, :class:`~Exporter`, and wire them up.

        Args:
            task_config (Task.Config): the config of the current task
            metadata: saved global context of this task, e.g: vocabulary, will be
                generated by :class:`~DataHandler` if it's None
            model_state: saved model parameters, will be loaded into model when given
        """
        print("Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))
        featurizer = create_featurizer(task_config.featurizer, task_config.features)
        # load data
        data_handler = create_data_handler(
            task_config.data_handler,
            task_config.features,
            task_config.labels,
            featurizer=featurizer,
        )
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata

        model = create_model(task_config.model, task_config.features, metadata)
        if model_state:
            model.load_state_dict(model_state)
        if cuda_utils.CUDA_ENABLED:
            model = model.cuda()
        metric_reporter = create_metric_reporter(task_config.metric_reporter, metadata)
        optimizer = create_optimizer(task_config.optimizer, model)
        exporter = (
            create_exporter(
                task_config.exporter,
                task_config.features,
                task_config.labels,
                data_handler.metadata,
                task_config.model,
            )
            if task_config.exporter
            else None
        )
        return cls(
            trainer=create_trainer(task_config.trainer),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            optimizer=optimizer,
            lr_scheduler=Scheduler(
                optimizer, task_config.scheduler, metric_reporter.lower_is_better
            ),
            exporter=exporter,
        )
예제 #4
0
    def test_read_partially_from_csv(self):
        file_name = tests_module.test_file("train_data_tiny.tsv")
        columns = {DFColumn.DOC_LABEL: 0, DFColumn.UTTERANCE: 2}

        feat = WordFeatConfig(
            vocab_from_all_data=True,
            vocab_from_train_data=False,
            vocab_from_pretrained_embeddings=False,
        )
        featurizer = create_featurizer(
            SimpleFeaturizer.Config(), FeatureConfig(word_feat=feat)
        )
        data_handler = DocClassificationDataHandler.from_config(
            DocClassificationDataHandler.Config(),
            ModelInputConfig(word_feat=feat),
            TargetConfig(),
            featurizer=featurizer,
        )
        data = list(data_handler.read_from_file(file_name, columns))
        for col in columns:
            self.assertTrue(col in data[0], "{} must in the data".format(col))
        self.assertEqual("alarm/modify_alarm", data[0][DFColumn.DOC_LABEL])
        self.assertEqual(
            "change my alarm tomorrow to wake me up 30 minutes earlier",
            data[0][DFColumn.UTTERANCE],
        )
예제 #5
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        print("Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))

        data_handlers = OrderedDict()
        exporters = OrderedDict()
        for name, task in task_config.tasks.items():
            featurizer = create_featurizer(task.featurizer, task.features)
            data_handlers[name] = create_data_handler(task.data_handler,
                                                      task.features,
                                                      task.labels,
                                                      featurizer=featurizer)
        data_handler = DisjointMultitaskDataHandler(task_config.data_handler,
                                                    data_handlers)
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()
        metadata = data_handler.metadata
        exporters = {
            name: (create_exporter(
                task.exporter,
                task.features,
                task.labels,
                data_handler.data_handlers[name].metadata,
                task.model,
            ) if task.exporter else None)
            for name, task in task_config.tasks.items()
        }
        metric_reporter = DisjointMultitaskMetricReporter(
            OrderedDict(
                (name,
                 create_metric_reporter(task.metric_reporter, metadata[name]))
                for name, task in task_config.tasks.items()),
            target_task_name=task_config.metric_reporter.target_task_name,
        )

        model = DisjointMultitaskModel(
            OrderedDict(
                (name, create_model(task.model, task.features, metadata[name]))
                for name, task in task_config.tasks.items()))
        if model_state:
            model.load_state_dict(model_state)
        if cuda_utils.CUDA_ENABLED:
            model = model.cuda()

        optimizers = create_optimizer(model, task_config.optimizer)
        return cls(
            exporters=exporters,
            trainer=create_trainer(task_config.trainer),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            optimizers=optimizers,
            lr_scheduler=Scheduler(optimizers, task_config.scheduler,
                                   metric_reporter.lower_is_better),
        )
예제 #6
0
 def _init_data_handler(self):
     data_handler = LanguageModelDataHandler.from_config(
         LanguageModelDataHandler.Config(),
         FeatureConfig(),
         WordLabelConfig(),
         featurizer=create_featurizer(SimpleFeaturizer.Config(), FeatureConfig()),
         shuffle=False,
     )
     data_handler.init_metadata_from_path(FILE_NAME, FILE_NAME, FILE_NAME)
     return data_handler
예제 #7
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        print("(mldc/task/gpt_task.py def from_config) Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))

        featurizer = create_featurizer(
            task_config.featurizer,
            task_config.features,
            text_embedder_config=task_config.text_embedder
        )  # featurizer :: text embedder GPT2Embed

        # load data
        data_handler = create_data_handler(
            task_config.data_handler,
            task_config.features,
            task_config.labels,
            text_embedder_config=task_config.text_embedder,
            featurizer=featurizer,
        )
        print(
            "\n(mldc/task/retrieval.py GptTask def from_config) Loading data..."
        )
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata
        task_config.features.seq_word_feat.embed_dim = data_handler.text_embedder.embed_dim

        print("create model!")
        model = create_model(task_config.model, task_config.features, metadata)
        if model_state:
            model.load_state_dict(model_state)
        if cuda_utils.CUDA_ENABLED:
            model = model.cuda()
        metric_reporter = create_metric_reporter(
            task_config.metric_reporter,
            metadata,
            text_embedder=task_config.text_embedder)

        return cls(
            trainer=create_trainer(task_config.trainer),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            model_needs_meta_training=task_config.model_needs_meta_training,
        )
예제 #8
0
    def create_language_model_data_handler(cls) -> LanguageModelDataHandler:
        # TODO: Refactor this after Shicong refactors PyText config and removes
        # Thrift. After that directly use Data Handler's from config method
        # with synthetic configs
        columns = [DFColumn.UTTERANCE]
        features: Dict[str, Field] = {
            DatasetFieldName.TEXT_FIELD: TextFeatureField(
                eos_token=VocabMeta.EOS_TOKEN, init_token=VocabMeta.INIT_TOKEN
            )
        }

        return LanguageModelDataHandler(
            raw_columns=columns,
            features=features,
            labels={},
            featurizer=create_featurizer(SimpleFeaturizer.Config(), FeatureConfig()),
        )
예제 #9
0
    def from_config(
        cls,
        task_config: Config,
        metadata=None,
        model_state=None,
        tensorizers=None,
        rank=0,
        world_size=1,
    ):
        print("Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))

        data_handlers = OrderedDict()
        exporters = OrderedDict()
        for name, task in task_config.tasks.items():
            featurizer = create_featurizer(task.featurizer, task.features)
            data_handlers[name] = create_data_handler(
                task.data_handler, task.features, task.labels, featurizer=featurizer
            )
        data_handler = DisjointMultitaskDataHandler(
            task_config.data_handler,
            data_handlers,
            target_task_name=task_config.target_task_name,
        )
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata
        exporters = {
            name: (
                create_exporter(
                    task.exporter,
                    task.features,
                    task.labels,
                    data_handler.data_handlers[name].metadata,
                    task.model,
                )
                if task.exporter
                else None
            )
            for name, task in task_config.tasks.items()
        }
        task_weights = {
            task_name: task_config.task_weights.get(task_name, 1)
            for task_name in task_config.tasks.keys()
        }
        metric_reporter = DisjointMultitaskMetricReporter(
            OrderedDict(
                (name, create_metric_reporter(task.metric_reporter, metadata[name]))
                for name, task in task_config.tasks.items()
            ),
            loss_weights=task_weights,
            target_task_name=task_config.target_task_name,
            use_subtask_select_metric=(
                task_config.metric_reporter.use_subtask_select_metric
            ),
        )
        model = DisjointMultitaskModel(
            OrderedDict(
                (name, create_model(task.model, task.features, metadata[name]))
                for name, task in task_config.tasks.items()
            ),
            loss_weights=task_weights,
        )
        if model_state:
            model.load_state_dict(model_state)
        if cuda.CUDA_ENABLED:
            model = model.cuda()

        return cls(
            target_task_name=task_config.target_task_name,
            exporters=exporters,
            trainer=create_trainer(task_config.trainer, model),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
        )