def create_metric_reporter(cls, config: Config, tensorizers: Dict[str, Tensorizer]): return NERMetricReporter( channels=[ConsoleChannel()], label_names=list(tensorizers["tokens"].labels_vocab._vocab), pad_idx=tensorizers["tokens"].labels_pad_idx, )
def from_config(cls, config: Config, tensorizers: Dict[str, Tensorizer]): return cls( [ ConsoleChannel(), Seq2SeqFileChannel([Stage.TEST], config.output_path, tensorizers), ], tensorizers, )
def from_config(cls, config, *args, tensorizers=None, **kwargs): return cls( channels=[ ConsoleChannel(), MultiSpanQAFileChannel((Stage.TEST, ), config.output_path), ], tensorizer=tensorizers["tokens"], )
def from_config(cls, config, *args, tensorizers=None, **kwargs): return cls( channels=[ ConsoleChannel(), FileChannel((Stage.TEST, ), config.output_path) ], text_column_names=config.text_column_names, model_select_metric=config.model_select_metric, task_batch_size=config.task_batch_size, num_negative_ctxs=config.num_negative_ctxs, )
def from_config(cls, config, *args, tensorizers=None, **kwargs): return cls( channels=[ ConsoleChannel(), SquadFileChannel((Stage.TEST, ), config.output_path), ], n_best_size=config.n_best_size, max_answer_length=config.max_answer_length, ignore_impossible=config.ignore_impossible, has_answer_labels=tensorizers["has_answer"].vocab._vocab, tensorizer=tensorizers["squad_input"], false_label=config.false_label, )
def from_config(cls, config: Config, tensorizers: Dict[str, Tensorizer]): channels = [ConsoleChannel()] if config.TEMP_DUMP_PREDICTIONS: channels.append( Seq2SeqFileChannel([Stage.TEST], config.output_path, tensorizers), ) return cls( channels, config.log_gradient, tensorizers, config.model_select_metric_key, config.select_length_beam, config.print_length_metrics, )
def from_config(cls, config: Config, tensorizers: Dict[str, Tensorizer]): return cls( [ ConsoleChannel(), CompositionalSeq2SeqFileChannel( [Stage.TEST], config.output_path, tensorizers, config.accept_flat_intents_slots, ), ], tensorizers, config.accept_flat_intents_slots, )
def from_config(cls, config: Config, tensorizers: Dict[str, Tensorizer]): channels = [ConsoleChannel()] if config.TEMP_DUMP_PREDICTIONS: channels.append( MaskedCompositionalSeq2SeqFileChannel( [Stage.TEST], config.output_path, tensorizers, config.accept_flat_intents_slots, )) return cls( channels, config.log_gradient, tensorizers, config.accept_flat_intents_slots, config.model_select_metric_key, config.select_length_beam, )
def from_config(cls, config, tensorizers): return MyTaggingMetricReporter( channels=[ConsoleChannel(), TensorBoardChannel()], label_names=tensorizers["slots"].vocab, )
def from_config0(cls, config, vocab): return MyTaggingMetricReporter( channels=[ConsoleChannel(), TensorBoardChannel()], label_names=vocab)
def create_metric_reporter(cls, config, tensorizers): return MyTaggingMetricReporter( channels=[ConsoleChannel(), TensorBoardChannel()], label_names=list(tensorizers["slots"].vocab), )
def from_config(cls, config, *args, **kwargs): return cls([ConsoleChannel()], config.pep_format)
def from_config(cls, config: PyTextConfig, pad_index: int = -1): return cls(channels=[ConsoleChannel()], pad_index=pad_index)