예제 #1
0
def test_relax_dgo():
    global tmodel
    from pytfa.optim.relaxation import relax_dgo

    tmodel.reactions.Ec_biomass_iJO1366_WT_53p95M.lower_bound = 1.5
    tmodel.optimize()
    relax_dgo(tmodel)
예제 #2
0
def make_thermo_model():
    vanilla_model = get_model(solver)

    name = 'iJO1366_T1E0N0_{}'.format(get_timestr())

    vanilla_model.reactions.EX_glc__D_e.lower_bound = -1 * glc_uptake - glc_uptake_std
    vanilla_model.reactions.EX_glc__D_e.upper_bound = -1 * glc_uptake + glc_uptake_std

    vanilla_model.objective = growth_reaction_id
    vanilla_model.optimize()

    thermo_data, lexicon, compartment_data = get_thermo_data()

    ecoli = ThermoMEModel(
        thermo_data,
        model=vanilla_model,
        name=name,
    )

    need_relax = False

    try:
        ecoli.optimize()
    except AttributeError:
        need_relax = True

    if need_relax:
        final_model, slack_model, relax_table = relax_dgo(ecoli)
    else:
        final_model = ecoli

    from pytfa.io.json import save_json_model

    save_json_model(final_model, 'models/' + name)
예제 #3
0
def pytfa_relax_dgo(tmodel: ThermoModel, reactions_to_ignore=None):
    """
    Uses the pytfa algorithm to relax the standard Gibbs free energy bounds.

    Parameters
    ----------
    tmodel : pytfa.ThermoModel
        A cobra model with thermodynamics information.
    reactions_to_ignore : list
        A list of reaction IDs that will be ignored by the relaxation
        algorithm.

    Returns
    -------
    relaxed_model : pytfa.ThermoModel
        The model with the relaxations applied to it.
    relax_table : pandas.DataFrame
        A 2-column table containing bound violation magnitudes.

    Raises
    ------
    Infeasible
        If the feasibility relaxation fails.
    """
    from pytfa.optim.relaxation import relax_dgo

    if reactions_to_ignore is None:
        reactions_to_ignore = []
    relaxed_model, _, relax_table = relax_dgo(tmodel, reactions_to_ignore)
    if relax_table is None:
        raise Infeasible("Failed to create the feasibility relaxation!")
    relaxed_model.optimize()
    relax_table = get_dgo_bound_change(relaxed_model, relax_table)
    return relaxed_model, relax_table
print('TFA Solution found : {0:.5g}'.format(tfa_value))

tfbaFile = root_dir + '/sc.tfba.noRelax.solution.output.pkl'
with open(tfbaFile, 'wb') as file:
    pickle.dump(tfa_solution, file)

# It might happen that the model is infeasible. In this case, we can relax
# thermodynamics constraints:

data_for_later = {}

if tfa_value < 0.1:
    from pytfa.optim.relaxation import relax_dgo

    mytfa.reactions.get_by_id(biomass_rxn).lower_bound = 0.5 * fba_value
    relaxed_model, slack_model, relax_table = relax_dgo(mytfa)

    original_model, mytfa = mytfa, relaxed_model

    print('Relaxation: ')
    print(relax_table)

    tfa_solution = mytfa.optimize()
    tfa_value = tfa_solution.objective_value
    print('relaxed TFA Solution found : {0:.5g}'.format(tfa_value))

    tfbaFile = root_dir + '/sc.tfba.Relax.solution.output.pkl'
    with open(tfbaFile, 'wb') as file:
        pickle.dump(tfa_solution, file)

# Report
예제 #5
0
def create_model(has_thermo,
                 has_expression,
                 has_allocation,
                 kcat_mode='kmax',
                 infer_missing_enz=False,
                 additional_enz=None,
                 free_rib_ratio=0.2,
                 free_rnap_ratio=0.75,
                 add_displacement=False,
                 n_mu_bins=128,
                 name_suffix='',
                 kcat_overrides=None):
    #------------------------------------------------------------
    # Initialisation
    #------------------------------------------------------------

    assert has_expression == True

    # this hack works because we are using the solver switch to update the var
    # names in the solver but really we should not do this
    # TODO: clean up model.sanitize_varnames
    vanilla_model = get_model('optlang-glpk')
    vanilla_model.reactions.EX_glc__D_e.lower_bound = -1 * glc_uptake - glc_uptake_std
    vanilla_model.reactions.EX_glc__D_e.upper_bound = -1 * glc_uptake + glc_uptake_std
    vanilla_model.objective = growth_reaction_id
    fba_sol = vanilla_model.slim_optimize()

    # vanilla_model.reactions.get_by_id(growth_reaction_id).lower_bound = observed_growth
    # fva = flux_variability_analysis(vanilla_model)
    # vanilla_model.reactions.get_by_id(growth_reaction_id).lower_bound = 0

    # original_bounds = pd.DataFrame.from_dict(
    #     {r.id:(r.lower_bound, r.upper_bound)
    #      for r in vanilla_model.reactions}, orient = 'index')
    # original_bounds.columns = ['lb','ub']

    mu_0 = fba_sol
    mu_range = [0, 3.5]
    n_mu_bins = n_mu_bins

    time_str = get_timestr()

    coupling_dict = get_coupling_dict(vanilla_model,
                                      mode=kcat_mode,
                                      atps_name='ATPS4rpp',
                                      infer_missing_enz=infer_missing_enz)

    if additional_enz is not None:
        additional_dict = get_transporters_coupling(
            model=vanilla_model, additional_enz=additional_enz)

        additional_dict.update(coupling_dict)

        coupling_dict = additional_dict

    if kcat_overrides is not None:
        for rxn, enz_list in coupling_dict.items():
            for e in enz_list:
                if e.id in kcat_overrides:
                    prev_kcat = e.kcat_fwd
                    new_kcat = kcat_overrides[e.id]
                    e.kcat_fwd = new_kcat
                    e.kcat_bwd = new_kcat
                    print('Replaced kcat for {}: {} <-- {} s-1'.format(
                        e.id, prev_kcat / 3600, new_kcat / 3600))

    aa_dict, rna_nucleotides, rna_nucleotides_mp, dna_nucleotides = get_monomers_dict(
    )
    essentials = get_essentials()

    # Initialize the model
    model_name = 'ETFL' if has_thermo else 'EFL'
    model_name = ('v' + model_name) if has_allocation else model_name
    model_name = (model_name +
                  '_{}'.format(name_suffix)) if name_suffix else model_name
    model_name = (model_name +
                  '_infer') if bool(infer_missing_enz) else model_name

    name = 'iJO1366_{}_{}_enz_{}_bins_{}.json'.format(model_name,
                                                      len(coupling_dict),
                                                      n_mu_bins, time_str)

    if has_thermo:

        thermo_data, lexicon, compartment_data = get_thermo_data()

        ecoli = ThermoMEModel(
            thermo_data,
            model=vanilla_model,
            growth_reaction=growth_reaction_id,
            mu_range=mu_range,
            n_mu_bins=n_mu_bins,
            name=name,
        )
    else:
        ecoli = MEModel(
            model=vanilla_model,
            growth_reaction=growth_reaction_id,
            mu_range=mu_range,
            n_mu_bins=n_mu_bins,
            name=name,
        )

    ecoli.name = name
    ecoli.logger.setLevel(logging.WARNING)
    ecoli.sloppy = True
    # apply_bounds(ecoli,fva)

    ecoli.solver = solver
    standard_solver_config(ecoli, verbose=False)

    if has_thermo:
        # Annotate the cobra_model
        annotate_from_lexicon(ecoli, lexicon)
        apply_compartment_data(ecoli, compartment_data)

        # TFA conversion
        ecoli.prepare()
        ecoli.convert(add_displacement=add_displacement)

    mrna_dict = get_mrna_dict(ecoli)
    nt_sequences = get_nt_sequences()
    rnap = get_rnap()
    # rnap.kcat_fwd *= 0.5
    rib = get_rib()

    # Remove nucleotides and amino acids from biomass reaction as they will be
    # taken into account by the expression

    remove_from_biomass_equation(model=ecoli,
                                 nt_dict=rna_nucleotides,
                                 aa_dict=aa_dict,
                                 essentials_dict=essentials)

    ##########################
    ##    MODEL CREATION    ##
    ##########################

    ecoli.add_nucleotide_sequences(nt_sequences)
    ecoli.add_essentials(essentials=essentials,
                         aa_dict=aa_dict,
                         rna_nucleotides=rna_nucleotides,
                         rna_nucleotides_mp=rna_nucleotides_mp)
    ecoli.add_mrnas(mrna_dict.values())
    ecoli.add_ribosome(rib, free_rib_ratio)
    ecoli.add_rnap(rnap, free_rnap_ratio)

    ecoli.build_expression()
    ecoli.add_enzymatic_coupling(coupling_dict)

    if has_allocation:

        nt_ratios, aa_ratios = get_ratios()
        chromosome_len, gc_ratio = get_ecoli_gen_stats()
        kdeg_mrna, mrna_length_avg = get_mrna_metrics()
        kdeg_enz, peptide_length_avg = get_enz_metrics()
        neidhardt_mu, neidhardt_rrel, neidhardt_prel, neidhardt_drel = get_neidhardt_data(
        )

        ecoli.add_dummies(nt_ratios=nt_ratios,
                          mrna_kdeg=kdeg_mrna,
                          mrna_length=mrna_length_avg,
                          aa_ratios=aa_ratios,
                          enzyme_kdeg=kdeg_enz,
                          peptide_length=peptide_length_avg)
        add_protein_mass_requirement(ecoli, neidhardt_mu, neidhardt_prel)
        add_rna_mass_requirement(ecoli, neidhardt_mu, neidhardt_rrel)
        add_dna_mass_requirement(ecoli,
                                 mu_values=neidhardt_mu,
                                 dna_rel=neidhardt_drel,
                                 gc_ratio=gc_ratio,
                                 chromosome_len=chromosome_len,
                                 dna_dict=dna_nucleotides)

        dna_pol = get_dna_polymerase()
        ecoli.add_enzymatic_coupling({'DNA_formation': [
            dna_pol,
        ]})

    # Need to put after, because dummy has to be taken into account if used.
    ecoli.populate_expression()
    ecoli.add_trna_mass_balances()

    ecoli.print_info()
    ecoli.growth_reaction.lower_bound = observed_growth - 1 * observed_growth_std

    need_relax = False

    ecoli.repair()

    try:
        ecoli.optimize()
    except (AttributeError, SolverError):
        need_relax = True

    if has_thermo and need_relax:
        # final_model, slack_model, relax_table = relax_dgo(ecoli)
        final_model, slack_model, relax_table = relax_dgo(ecoli, in_place=True)
    else:
        final_model = ecoli

    final_model.growth_reaction.lower_bound = 0
    # apply_bounds(ecoli, original_bounds)
    solution = final_model.optimize()
    print_standard_sol(final_model)

    filepath = 'models/{}'.format(final_model.name)
    save_json_model(final_model, filepath)

    final_model.logger.info('Build complete for model {}'.format(
        final_model.name))

    return final_model
예제 #6
0
    def __init__(self,
                 model_code='ecoli:iJO1366',
                 solver='gurobi',
                 min_biomass=0.55):
        start_time = time.time()
        super().__init__(model_code, solver, min_biomass)
        if self.species == 'ecoli':
            # Add cystein -> selenocystein transformation for convenience
            selcys = Metabolite(id='selcys__L_c',
                                compartment='c',
                                formula='C3H7NO2Se')
            selcys_rxn = Reaction(id='PSEUDO_selenocystein_synthase',
                                  name='PSEUDO Selenocystein_Synthase')
            selcys_rxn.add_metabolites({
                self.model.metabolites.cys__L_c: -1,
                selcys: +1
            })
            self.model.add_reactions([selcys_rxn])

            self._sanitize_varnames()
            # self.model.reactions.EX_glc__D_e.lower_bound = -1 * glc_uptake - glc_uptake_std
            # self.model.reactions.EX_glc__D_e.upper_bound = -1 * glc_uptake + glc_uptake_std

            # time_str = get_timestr()
            coupling_dict = get_coupling_dict(self.model,
                                              mode='kmax',
                                              atps_name='ATPS4rpp',
                                              infer_missing_enz=True)
            aa_dict, rna_nucleotides, rna_nucleotides_mp, dna_nucleotides = get_monomers_dict(
            )
            essentials = get_essentials()

            # if has_thermo:
            thermo_db = load_thermoDB(
                join(data_dir, 'thermo/thermo_data.thermodb'))
            self.model = ThermoMEModel(thermo_db,
                                       model=self.model,
                                       growth_reaction=self.biomass_reaction,
                                       mu_range=mu_range,
                                       n_mu_bins=n_mu_bins)
            self.model.name = self.model_name
            # annotate_from_lexicon(self.model, read_lexicon(dir_path + '/data/thermo/lexicon.csv'))
            # compartment_data = read_compartment_data(dir_path + '/data/thermo/compartment_data.json')
            # apply_compartment_data(self.model, compartment_data)
            apply_compartment_data(
                self.model,
                read_compartment_data(
                    join(data_dir, 'thermo/compartment_data.json')))
            annotate_from_lexicon(
                self.model, read_lexicon(join(data_dir, 'thermo/lexicon.csv')))
            self.model.prepare()
            # self.model.reactions.MECDPS.thermo['computed'] = False
            # self.model.reactions.NDPK4.thermo['computed'] = False
            # self.model.reactions.TMDPP.thermo['computed'] = False

            # self.model.reactions.ARGAGMt7pp.thermo['computed'] = False
            self.model.convert()
            # else:
            #     self.model = MEModel(model=self.model, growth_reaction=growth_reaction_id, mu_range=mu_range,
            #                          n_mu_bins=n_mu_bins, name=name)
            # mrna_dict = get_mrna_dict(self.model)
            # nt_sequences = get_nt_sequences()
            nt_sequences = pd.read_csv(join(
                data_dir, f'{self.species}/{self.model_name}_nt_seq_kegg.csv'),
                                       index_col=0,
                                       header=None).iloc[:, 0]
            mrna_dict = self.get_mrna_dict(nt_sequences)
            rnap = get_rnap()
            rib = get_rib()

            # Remove nucleotides and amino acids from biomass reaction as they will be
            # taken into account by the expression
            remove_from_biomass_equation(model=self.model,
                                         nt_dict=rna_nucleotides,
                                         aa_dict=aa_dict,
                                         essentials_dict=essentials)

            self.model.add_nucleotide_sequences(nt_sequences)
            self.model.add_essentials(essentials=essentials,
                                      aa_dict=aa_dict,
                                      rna_nucleotides=rna_nucleotides,
                                      rna_nucleotides_mp=rna_nucleotides_mp)
            self.model.add_mrnas(mrna_dict.values())
            self.model.add_ribosome(rib, free_ratio=0.2)
            # http://bionumbers.hms.harvard.edu/bionumber.aspx?id=102348&ver=1&trm=rna%20polymerase%20half%20life&org=
            # Name          Fraction of active RNA Polymerase
            # Bionumber ID  102348
            # Value 	    0.17-0.3 unitless
            # Source        Bremer, H., Dennis, P. P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate.
            #               Neidhardt, et al. eds. Escherichia coli and Salmonella typhimurium: Cellular
            #                       and Molecular Biology, 2nd ed. chapter 97 Table 1
            self.model.add_rnap(rnap, free_ratio=0.75)

            self.model.build_expression()
            self.model.add_enzymatic_coupling(coupling_dict)

            # if has_neidhardt:
            #     nt_ratios, aa_ratios = get_ratios()
            #     chromosome_len, gc_ratio = get_ecoli_gen_stats()
            #     kdeg_mrna, mrna_length_avg = get_mrna_metrics()
            #     kdeg_enz, peptide_length_avg = get_enz_metrics()
            #     neidhardt_mu, neidhardt_rrel, neidhardt_prel, neidhardt_drel = get_neidhardt_data()
            #
            #     add_interpolation_variables(self.model)
            #     self.model.add_dummies(nt_ratios=nt_ratios, mrna_kdeg=kdeg_mrna, mrna_length=mrna_length_avg,
            #                            aa_ratios=aa_ratios, enzyme_kdeg=kdeg_enz, peptide_length=peptide_length_avg)
            #     add_protein_mass_requirement(self.model, neidhardt_mu, neidhardt_prel)
            #     add_rna_mass_requirement(self.model, neidhardt_mu, neidhardt_rrel)
            #     add_dna_mass_requirement(self.model, mu_values=neidhardt_mu, dna_rel=neidhardt_drel, gc_ratio=gc_ratio,
            #                              chromosome_len=chromosome_len, dna_dict=dna_nucleotides)

            # Need to put after, because dummy has to be taken into account if used.
            self.model.populate_expression()
            self.model.add_trna_mass_balances()
            # self.model.growth_reaction.lower_bound = objective_lb
            self.model.repair()
            print(
                f"Building ETFL model costs {time.time() - start_time:.2f} seconds!"
            )
            try:
                start_time = time.time()
                self.model.optimize()
            except (AttributeError, SolverError):
                print(
                    f"Solving no relaxed model costs {time.time() - start_time:.2f} seconds!"
                )
                start_time = time.time()
                self.model, _, _ = relax_dgo(self.model, in_place=True)
                print(
                    f"Relaxing model costs {time.time() - start_time:.2f} seconds!"
                )
            # self.model.growth_reaction.lower_bound = 0
            # print(f"Build ETFL model for {time.time() - start_time:.2f} seconds!")
            self.model.print_info()
예제 #7
0
def create_model(has_thermo, has_expression, has_neidhardt, n_mu_bins=128):
    #------------------------------------------------------------
    # Initialisation
    #------------------------------------------------------------

    assert has_expression == True

    # this hack works because we are using the solver switch to update the var
    # names in the solver but really we should not do this
    # TODO: clean up model.sanitize_varnames
    vanilla_model = get_model('optlang-glpk')
    vanilla_model.reactions.EX_glc__D_e.lower_bound = -1 * glc_uptake - glc_uptake_std
    vanilla_model.reactions.EX_glc__D_e.upper_bound = -1 * glc_uptake + glc_uptake_std

    vanilla_model.objective = growth_reaction_id
    fba_sol = vanilla_model.slim_optimize()
    mu_0 = fba_sol
    mu_range = [0, 3.5]
    n_mu_bins = n_mu_bins

    time_str = get_timestr()

    coupling_dict = get_coupling_dict(
        vanilla_model,
        mode='kmax',
        # mode = 'kcat',
        atps_name='ATPS4rpp',
        infer_missing_enz=True)
    # coupling_dict = get_lloyd_coupling_dict(vanilla_model)
    aa_dict, rna_nucleotides, rna_nucleotides_mp, dna_nucleotides = get_monomers_dict(
    )
    essentials = get_essentials()

    # Initialize the model

    name = 'iJO1366_T{:1}E{:1}N{:1}_{}_enz_{}_bins_{}.json'.format(
        has_thermo, has_expression, has_neidhardt, len(coupling_dict),
        n_mu_bins, time_str)

    if has_thermo:

        thermo_data, lexicon, compartment_data = get_thermo_data()

        ecoli = ThermoMEModel(
            thermo_data,
            model=vanilla_model,
            growth_reaction=growth_reaction_id,
            mu_range=mu_range,
            n_mu_bins=n_mu_bins,
            name=name,
        )
    else:
        ecoli = MEModel(
            model=vanilla_model,
            growth_reaction=growth_reaction_id,
            mu_range=mu_range,
            n_mu_bins=n_mu_bins,
            name=name,
        )

    ecoli.name = name
    ecoli.logger.setLevel(logging.WARNING)

    ecoli.solver = solver
    standard_solver_config(ecoli)

    if has_thermo:
        # Annotate the cobra_model
        annotate_from_lexicon(ecoli, lexicon)
        apply_compartment_data(ecoli, compartment_data)

        # TFA conversion
        ecoli.prepare()

        # ecoli.reactions.GLUDy.thermo['computed'] = False
        # ecoli.reactions.DHAtpp.thermo['computed'] = False
        # ecoli.reactions.MLTP2.thermo['computed'] = False
        # ecoli.reactions.G3PD2.thermo['computed'] = False
        ecoli.reactions.MECDPS.thermo['computed'] = False
        ecoli.reactions.NDPK4.thermo['computed'] = False
        ecoli.reactions.TMDPP.thermo['computed'] = False
        ecoli.reactions.ARGAGMt7pp.thermo['computed'] = False

        ecoli.convert()  #add_displacement = True)

    mrna_dict = get_mrna_dict(ecoli)
    nt_sequences = get_nt_sequences()
    rnap = get_rnap()
    rib = get_rib()

    # Remove nucleotides and amino acids from biomass reaction as they will be
    # taken into account by the expression

    remove_from_biomass_equation(
        model=ecoli,
        nt_dict=rna_nucleotides,
        aa_dict=aa_dict,
        atp_id=essentials['atp'],
        adp_id=essentials['adp'],
        pi_id=essentials['pi'],
        h2o_id=essentials['h2o'],
        h_id=essentials['h'],
    )

    ##########################
    ##    MODEL CREATION    ##
    ##########################

    ecoli.add_nucleotide_sequences(nt_sequences)
    ecoli.add_essentials(essentials=essentials,
                         aa_dict=aa_dict,
                         rna_nucleotides=rna_nucleotides,
                         rna_nucleotides_mp=rna_nucleotides_mp)
    ecoli.add_mrnas(mrna_dict.values())
    ecoli.add_ribosome(rib, free_ratio=0.2)
    # http://bionumbers.hms.harvard.edu/bionumber.aspx?id=102348&ver=1&trm=rna%20polymerase%20half%20life&org=
    # Name          Fraction of active RNA Polymerase
    # Bionumber ID  102348
    # Value 	    0.17-0.3 unitless
    # Source        Bremer, H., Dennis, P. P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate.
    #               Neidhardt, et al. eds. Escherichia coli and Salmonella typhimurium: Cellular
    #                       and Molecular Biology, 2nd ed. chapter 97 Table 1
    ecoli.add_rnap(rnap, free_ratio=0.75)

    ecoli.build_expression()
    ecoli.add_enzymatic_coupling(coupling_dict)

    if has_neidhardt:

        nt_ratios, aa_ratios = get_ratios()
        chromosome_len, gc_ratio = get_ecoli_gen_stats()
        kdeg_mrna, mrna_length_avg = get_mrna_metrics()
        kdeg_enz, peptide_length_avg = get_enz_metrics()
        neidhardt_mu, neidhardt_rrel, neidhardt_prel, neidhardt_drel = get_neidhardt_data(
        )

        ecoli.add_interpolation_variables()
        ecoli.add_dummies(nt_ratios=nt_ratios,
                          mrna_kdeg=kdeg_mrna,
                          mrna_length=mrna_length_avg,
                          aa_ratios=aa_ratios,
                          enzyme_kdeg=kdeg_enz,
                          peptide_length=peptide_length_avg)
        ecoli.add_protein_mass_requirement(neidhardt_mu, neidhardt_prel)
        ecoli.add_rna_mass_requirement(neidhardt_mu, neidhardt_rrel)
        ecoli.add_dna_mass_requirement(mu_values=neidhardt_mu,
                                       dna_rel=neidhardt_drel,
                                       gc_ratio=gc_ratio,
                                       chromosome_len=chromosome_len,
                                       dna_dict=dna_nucleotides)

    # Need to put after, because dummy has to be taken into account if used.
    ecoli.populate_expression()
    ecoli.add_trna_mass_balances()

    ecoli.print_info()
    ecoli.growth_reaction.lower_bound = observed_growth - 3 * observed_growth_std

    need_relax = False

    ecoli.repair()

    try:
        ecoli.optimize()
    except (AttributeError, SolverError):
        need_relax = True

    # from ipdb import set_trace; set_trace()

    if has_thermo and need_relax:
        final_model, slack_model, relax_table = relax_dgo(ecoli)
        # final_model, slack_model, relax_table = relax_dgo(ecoli, in_place = True)
    else:
        final_model = ecoli

    final_model.growth_reaction.lower_bound = 0
    solution = final_model.optimize()
    print('Objective            : {}'.format(
        final_model.solution.objective_value))
    print(' - Glucose uptake    : {}'.format(
        final_model.reactions.EX_glc__D_e.flux))
    print(' - Growth            : {}'.format(final_model.growth_reaction.flux))
    print(' - Ribosomes produced: {}'.format(final_model.ribosome.X))
    print(' - RNAP produced: {}'.format(final_model.rnap.X))
    try:
        print(' - DNA produced: {}'.format(final_model.solution.raw.DN_DNA))
    except AttributeError:
        pass

    filepath = 'models/{}'.format(final_model.name)
    # save_json_model(final_model, filepath)

    final_model.logger.info('Build complete for model {}'.format(
        final_model.name))

    return final_model
예제 #8
0
# tfa_model.solver.configuration.verbosity = True
tfa_model.logger.setLevel = 30

tfa_solution = tfa_model.optimize()
tfa_value = tfa_solution.objective_value

# It might happen that the model is infeasible. In this case, we can relax
# thermodynamics constraints:

if tfa_value < 0.1:
    from pytfa.optim.relaxation import relax_dgo

    biomass_rxn = 'Ec_biomass_iJO1366_WT_53p95M'
    tfa_model.reactions.get_by_id(biomass_rxn).lower_bound = 0.9 * fba_value
    relaxed_model, slack_model, relax_table = relax_dgo(tfa_model,
                                                        in_place=True)

    original_model, tfa_model = tfa_model, relaxed_model

    print('Relaxation: ')
    print(relax_table)

    tfa_solution = tfa_model.optimize()
    tfa_value = tfa_solution.objective_value

path_to_params = 'tuto_redgem_params.yaml'
redgem = RedGEM(tfa_model, path_to_params, False)
rgem = redgem.run()

redgem_solution = rgem.optimize()
redgem_value = redgem_solution.objective_value
예제 #9
0
def create_tfa_model(add_displacement=False):
    #------------------------------------------------------------
    # Initialisation
    #------------------------------------------------------------

    time_str = get_timestr()
    name = 'iJO1366_TFA_{}.json'.format(time_str)

    # this hack works because we are using the solver switch to update the var
    # names in the solver but really we should not do this
    # TODO: clean up model.sanitize_varnames
    vanilla_model = get_model('optlang-glpk')
    vanilla_model.reactions.EX_glc__D_e.lower_bound = -1 * glc_uptake - glc_uptake_std
    vanilla_model.reactions.EX_glc__D_e.upper_bound = -1 * glc_uptake + glc_uptake_std
    vanilla_model.objective = growth_reaction_id
    fba_sol = vanilla_model.slim_optimize()

    thermo_data, lexicon, compartment_data = get_thermo_data()

    ecoli = ThermoModel(
        thermo_data=thermo_data,
        model=vanilla_model,
        name=name,
    )

    ecoli.name = name
    ecoli.logger.setLevel(logging.WARNING)
    ecoli.sloppy = True
    # apply_bounds(ecoli,fva)

    ecoli.solver = solver

    annotate_from_lexicon(ecoli, lexicon)
    apply_compartment_data(ecoli, compartment_data)
    # TFA conversion
    ecoli.prepare()
    ecoli.convert(add_displacement=add_displacement)

    ecoli.print_info()
    ecoli.reactions.get_by_id(growth_reaction_id).lower_bound = observed_growth - \
                                                              1*observed_growth_std

    need_relax = False

    ecoli.repair()

    try:
        ecoli.optimize()
    except (AttributeError, SolverError):
        need_relax = True

    if need_relax:
        # final_model, slack_model, relax_table = relax_dgo(ecoli)
        final_model, slack_model, relax_table = relax_dgo(ecoli, in_place=True)
    else:
        final_model = ecoli

    final_model.reactions.get_by_id(growth_reaction_id).lower_bound = 0
    # apply_bounds(ecoli, original_bounds)
    solution = final_model.optimize()
    print('Objective            : {}'.format(
        final_model.solution.objective_value))
    print(' - Glucose uptake    : {}'.format(
        final_model.reactions.EX_glc__D_e.flux))

    filepath = 'models/{}'.format(final_model.name)
    save_json_model(final_model, filepath)

    final_model.logger.info('Build complete for model {}'.format(
        final_model.name))

    return final_model