예제 #1
0
파일: tiki.py 프로젝트: psnonis/TikiAI
    def build_processors(self):

        print('Tiki : Initializing : Building - Text Processors')

        with open('/final/data/pythia.yaml') as f:
            config = yaml.load(f, Loader=yaml.FullLoader)

        config = ConfigNode(config)
        config.training_parameters.evalai_inference = True  # Remove warning
        registry.register('config', config)

        self.config = config
        vqa_config = config.task_attributes.vqa.dataset_attributes.vqa2
        text_processor_config = vqa_config.processors.text_processor
        answer_processor_config = vqa_config.processors.answer_processor

        text_processor_config.params.vocab.vocab_file = '/final/data/vocabulary_100k.txt'
        answer_processor_config.params.vocab_file = '/final/data/answers_vqa.txt'

        self.text_processor = VocabProcessor(text_processor_config.params)
        self.answer_processor = VQAAnswerProcessor(
            answer_processor_config.params)

        registry.register('vqa2_text_processor', self.text_processor)
        registry.register('vqa2_answer_processor', self.answer_processor)
        registry.register('vqa2_num_final_outputs',
                          self.answer_processor.get_vocab_size())
예제 #2
0
    def _init_processors(self):
        with open(os.path.join(BASE_VQA_DIR_PATH, "model_data/pythia.yaml")) as f:
            config = yaml.load(f)

        config = ConfigNode(config)
        # Remove warning
        config.training_parameters.evalai_inference = True
        registry.register("config", config)

        self.config = config

        vqa_config = config.task_attributes.vqa.dataset_attributes.vqa2
        text_processor_config = vqa_config.processors.text_processor
        answer_processor_config = vqa_config.processors.answer_processor

        text_processor_config.params.vocab.vocab_file = os.path.join(
            BASE_VQA_DIR_PATH, "model_data/vocabulary_100k.txt"
        )
        answer_processor_config.params.vocab_file = os.path.join(
            BASE_VQA_DIR_PATH, "model_data/answers_vqa.txt"
        )
        # Add preprocessor as that will needed when we are getting questions from user
        self.text_processor = VocabProcessor(text_processor_config.params)
        self.answer_processor = VQAAnswerProcessor(answer_processor_config.params)

        registry.register("vqa2_text_processor", self.text_processor)
        registry.register("vqa2_answer_processor", self.answer_processor)
        registry.register(
            "vqa2_num_final_outputs", self.answer_processor.get_vocab_size()
        )
예제 #3
0
    def __init__(self, use_constrained=False):
        super(PythiaCaptioner, self).__init__()
        # load configuration file
        with open(config_file) as f:
            config = yaml.load(f)
        config = ConfigNode(config)

        self.use_constrained = use_constrained

        # TODO: not sure what these two lines really means
        config.training_parameters.evalai_inference = True
        registry.register("config", config)
        self.config = config

        captioning_config = config.task_attributes.captioning.dataset_attributes.coco
        text_processor_config = captioning_config.processors.text_processor
        caption_processor_config = captioning_config.processors.caption_processor

        text_processor_config.params.vocab.vocab_file = vocab_file
        caption_processor_config.params.vocab.vocab_file = vocab_file
        self.text_processor = VocabProcessor(text_processor_config.params)
        self.caption_processor = CaptionProcessor(
            caption_processor_config.params)

        registry.register("coco_text_processor", self.text_processor)
        registry.register("coco_caption_processor", self.caption_processor)

        self.model = self._build_model()
예제 #4
0
    def __init__(self, use_constrained=False):
        super(PythiaCaptioner, self).__init__()
        # load configuration file
        with open(config_file) as f:
            config = yaml.load(f)
        config = ConfigNode(config)

        self.use_constrained = use_constrained

        # the following blocks of code read some configuration
        # parameter in Pythia
        config.training_parameters.evalai_inference = True
        registry.register("config", config)
        self.config = config

        captioning_config = config.task_attributes.captioning.dataset_attributes.coco
        text_processor_config = captioning_config.processors.text_processor
        caption_processor_config = captioning_config.processors.caption_processor
        # text_processor and caption_processor are used to pre-process the text
        text_processor_config.params.vocab.vocab_file = vocab_file
        caption_processor_config.params.vocab.vocab_file = vocab_file
        self.text_processor = VocabProcessor(text_processor_config.params)
        self.caption_processor = CaptionProcessor(
            caption_processor_config.params)

        registry.register("coco_text_processor", self.text_processor)
        registry.register("coco_caption_processor", self.caption_processor)

        self.model = self._build_model()
예제 #5
0
파일: main.py 프로젝트: ascott02/pythia
  def _init_processors(self):
    with open(model_yaml) as f:
      config = yaml.load(f)

    config = ConfigNode(config)
    # Remove warning
    config.training_parameters.evalai_inference = True
    registry.register("config", config)

    self.config = config

    captioning_config = config.task_attributes.captioning.dataset_attributes.coco
    # captioning_config = config.task_attributes.captioning.dataset_attributes.youcookII
    text_processor_config = captioning_config.processors.text_processor
    caption_processor_config = captioning_config.processors.caption_processor
    # print("DEBUG captioning_config:", captioning_config)
    # print("DEBUG text_processor_config:", text_processor_config)
    # print("DEBUG caption_processor_config:", caption_processor_config)

    text_processor_config.params.vocab.vocab_file = "content/model_data/vocabulary_captioning_thresh5.txt"
    caption_processor_config.params.vocab.vocab_file = "content/model_data/vocabulary_captioning_thresh5.txt"
    self.text_processor = VocabProcessor(text_processor_config.params)
    self.caption_processor = CaptionProcessor(caption_processor_config.params)
    # print("DEBUG text_processor:", self.text_processor)
    # print("DEBUG caption_processor:", self.caption_processor)

    registry.register("coco_text_processor", self.text_processor)
    registry.register("coco_caption_processor", self.caption_processor)
예제 #6
0
    def __init__(self):
        config_file = 'model_data/butd.yaml'
        vocab_file = 'model_data/vocabulary_captioning_thresh5.txt'

        with open(config_file) as f:
            config = yaml.load(f)
        config = ConfigNode(config)

        captioning_config = config.task_attributes.captioning.dataset_attributes.coco
        text_processor_config = captioning_config.processors.text_processor
        text_processor_config.params.vocab.vocab_file = vocab_file
        text_processor = VocabProcessor(text_processor_config.params)

        self.vocab = text_processor.vocab
예제 #7
0
def init_processors(caption_config: Dict, butd_config: Dict):
    """Build the caption and text processors.

    """
    captioning_config = butd_config.task_attributes.captioning \
        .dataset_attributes.coco
    text_processor_config = captioning_config.processors.text_processor
    caption_processor_config = captioning_config.processors \
        .caption_processor
    vocab_file_path = caption_config["text_caption_processor_vocab_txt"]
    text_processor_config.params.vocab.vocab_file = vocab_file_path
    caption_processor_config.params.vocab.vocab_file = vocab_file_path
    text_processor = VocabProcessor(text_processor_config.params)
    caption_processor = CaptionProcessor(caption_processor_config.params)

    registry.register("coco_text_processor", text_processor)
    registry.register("coco_caption_processor", caption_processor)

    return caption_processor, text_processor
예제 #8
0
    def _init_processors(self):
        with open("model_data/butd.yaml") as f:
            config = yaml.load(f)

            config = ConfigNode(config)
            config.training_parameters.evalai_inference = True
            registry.register("config", config)

            self.config = config

            captioning_config = config.task_attributes.captioning.dataset_attributes.coco
            text_processor_config = captioning_config.processors.text_processor
            caption_processor_config = captioning_config.processors.caption_processor

            text_processor_config.params.vocab.vocab_file = "model_data/vocabulary_captioning_thresh5.txt"
            caption_processor_config.params.vocab.vocab_file = "model_data/vocabulary_captioning_thresh5.txt"
            self.text_processor = VocabProcessor(text_processor_config.params)
            self.caption_processor = CaptionProcessor(caption_processor_config.params)

            registry.register("coco_text_processor", self.text_processor)
            registry.register("coco_caption_processor", self.caption_processor)
예제 #9
0
#!/usr/bin/env python3

import yaml

from pythia.utils.configuration import ConfigNode
from pythia.tasks.processors import VocabProcessor, VQAAnswerProcessor

from torchvision import models

if __name__ == '__main__':

    resnet152 = models.resnet152(pretrained=True)

    with open('/final/data/pythia.yaml') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)

    config = ConfigNode(config)
    vqa_config = config.task_attributes.vqa.dataset_attributes.vqa2
    text_processor_config = vqa_config.processors.text_processor
    answer_processor_config = vqa_config.processors.answer_processor

    text_processor_config.params.vocab.vocab_file = '/final/data/vocabulary_100k.txt'
    answer_processor_config.params.vocab_file = '/final/data/answers_vqa.txt'

    text_processor = VocabProcessor(text_processor_config.params)
    answer_processor = VQAAnswerProcessor(answer_processor_config.params)