def python_main(): logger = logging.getLogger('') logger.setLevel(logging.INFO) from python.component_contribution import ComponentContribution from python.kegg_model import KeggModel from python.thermodynamic_constants import default_RT cc = ComponentContribution.init() reaction_strings = open(REACTION_FNAME, 'r').readlines() model = KeggModel.from_formulas(reaction_strings) model.add_thermo(cc) dG0_prime, dG0_std = model.get_transformed_dG0(7.0, 0.2, 298.15) cid2c_range = {cid : (1e-6, 1e-2) for cid in model.cids} cid2c_range['C00001'] = (1.0, 1.0) # water must be always set to 1 (equivalent to 55M) ln_conc = np.log(np.matrix([cid2c_range[cid] for cid in model.cids])) ln_conc_min = ln_conc[:, 0] ln_conc_max = ln_conc[:, 1] S_minus, S_plus = model.get_unidirectional_S() dG_prime_min = dG0_prime + default_RT * (S_minus.T * ln_conc_max + S_plus.T * ln_conc_min) dG_prime_max = dG0_prime + default_RT * (S_minus.T * ln_conc_min + S_plus.T * ln_conc_max) for i, r in enumerate(reaction_strings): print '-'*50 print r.strip() print "dG'0 = %8.1f +- %5.1f" % (dG0_prime[i, 0], dG0_std[i, i] * 1.96) print "dG' range = %8.1f - %8.1f" % (dG_prime_min[i, 0], dG_prime_max[i, 0]) if dG_prime_min[i, 0] < 0 and dG_prime_max[i, 0] > 0: print "REVERSIBLE!" else: print "IRREVERSIBLE!"
def main(): td = TrainingData() cc = ComponentContribution.init() G1 = np.matrix(cc.params['G1']) G2 = np.matrix(cc.params['G2']) G3 = np.matrix(cc.params['G3']) ############################################################################ #reaction = KeggReaction.parse_formula('C00002 + C00001 <=> C00008 + C00009'); fname = 'atpase'; reaction = KeggReaction.parse_formula('C00149 <=> C00122 + C00001'); fname = 'fumarase'; x, g = cc._decompose_reaction(reaction) weights_rc = (x.T * G1).round(5) weights_gc = (x.T * G2 + g.T * G3).round(5) weights = weights_rc + weights_gc orders = sorted(range(weights.shape[1]), key=lambda j:abs(weights[0, j]), reverse=True) output = csv.writer(open('res/%s_analysis.csv' % fname, 'w')) output.writerow(('Weight', 'dG\'0', 'dG0', 'reference', 'reaction')) for j in orders: if abs(weights[0, j]) < 1e-7: continue output.writerow((weights_rc[0, j], td.dG0_prime[j], td.dG0[j], td.reference[j], td.description[j]))
def python_main(): logger = logging.getLogger("") logger.setLevel(logging.INFO) from python.component_contribution import ComponentContribution from python.kegg_model import KeggModel cc = ComponentContribution.init() reaction_strings = open(REACTION_FNAME, "r").readlines() model = KeggModel.from_formulas(reaction_strings) model.add_thermo(cc) dG0_prime, dG0_std = model.get_transformed_dG0(7.0, 0.2, 298.15) print "For a linear problem, define two vector variables 'x' and 'y', each of length Nr (i.e. " + "the same length as the list of reactions). Then add these following " + "constraints: \n" + "-1 <= y <= 1\n" + "x = dG0_prime + 3 * dG0_std * y\n" + "Then use 'x' as the value of the standard Gibbs energy for all reactions." print "The results are writteng to: " + OUTPUT_FNAME savemat(OUTPUT_FNAME, {"dG0_prime": dG0_prime, "dG0_std": dG0_std}, oned_as="row")
# -*- coding: utf-8 -*- """ Created on Mon Jun 23 14:58:44 2014 @author: eladn """ from python.component_contribution import ComponentContribution from python.kegg_reaction import KeggReaction #pH = 7 I = 0.2 T = 298.15 F = 96.48 / 1000.0 # kJ/mol / mV cc = ComponentContribution.init() #formula = 'C00033 + C00282 <=> C00084 + C00001' #formula = 'C00067 + C00001 <=> C00058 + C00010' formula = 'C00003 + C00282 <=> C00004' ############################################################################# reaction = KeggReaction.parse_formula(formula) reaction_atom_bag = reaction._get_reaction_atom_bag() n_e = 0 if 'e-' in reaction_atom_bag: n_e = reaction_atom_bag['e-'] del reaction_atom_bag['e-'] if len(reaction_atom_bag) != 0: raise Exception('Reaction is not balanced (not only with respect to e-)') dG0_r, u_r = cc.get_dG0_r(reaction) for pH in xrange(6, 9):
import csv, os import numpy as np import matplotlib.pyplot as plt from python.component_contribution import ComponentContribution from python.kegg_model import KeggModel REPORT_CACHE_FNAME = 'cache/report_gc.csv' cid2dG0 = {} if not os.path.exists(REPORT_CACHE_FNAME): fp = open(REPORT_CACHE_FNAME, 'w') cc = ComponentContribution() cc.train() csv_out = csv.writer(fp) csv_out.writerow(['cid', 'dG0_f']) for compound_id in cc.ccache.get_all_compound_ids(): dG0_f = cc.get_major_ms_dG0_f(compound_id) csv_out.writerow([compound_id, '%8.2f' % dG0_f]) cid2dG0[compound_id] = dG0_f else: for row in csv.DictReader(open(REPORT_CACHE_FNAME, 'r')): cid2dG0[row['cid']] = float(row['dG0_f']) REACTION_FNAME = 'tests/report_gc_reactions.txt' reaction_strings = open(REACTION_FNAME, 'r').readlines() model = KeggModel.from_formulas(reaction_strings) # compare the dG0_r of the model to the one we get if multiplying # the model stoichiometric matrix by the formation energies model_dG0_f = np.matrix([cid2dG0[cid] for cid in model.cids]).T model_dG0_r = model.S.T * model_dG0_f