def __add_line_geometry(self, lines, shading, obj=None): lines = lines.astype("float32", copy=False) mi = np.min(lines, axis=0) ma = np.max(lines, axis=0) geometry = p3s.LineSegmentsGeometry(positions=lines.reshape((-1, 2, 3))) material = p3s.LineMaterial(linewidth=shading["line_width"], color=shading["line_color"]) #, vertexColors='VertexColors'), lines = p3s.LineSegments2(geometry=geometry, material=material) #type='LinePieces') line_obj = { "geometry": geometry, "mesh": lines, "material": material, "max": ma, "min": mi, "type": "Lines", "wireframe": None } if obj: return self.__add_object(line_obj, obj), line_obj else: return self.__add_object(line_obj)
def draw_lines(self, lines, colors, line_width=1): positions = np.array(lines) colors = [[colors[i], colors[i]] for i, line in enumerate(lines)] g = p3js.LineSegmentsGeometry(positions=positions, colors=colors) m = p3js.LineMaterial(linewidth=line_width, vertexColors='VertexColors') lines = p3js.LineSegments2(g, m) self.geometry.append(lines) return lines
def draw_line(self, line, color, line_width=1): positions = [[list(line[0]), list(line[1])]] colors = [[color, color]] g = p3js.LineSegmentsGeometry(positions=positions, colors=colors) m = p3js.LineMaterial(linewidth=line_width, vertexColors='VertexColors') line = p3js.LineSegments2(g, m) self.geometry.append(line) return line
def __init__(self, segment, color, **kwargs): g = three.LineSegmentsGeometry(positions=self.getPositions(segment)) m = three.LineMaterial(linewidth=10, color=color, light=True) super().__init__(g, m) self.segment = segment
def generate_3js_render( element_groups, canvas_size, zoom, camera_fov=30, background_color="white", background_opacity=1.0, reuse_objects=False, use_atom_arrays=False, use_label_arrays=False, ): """Create a pythreejs scene of the elements. Regarding initialisation performance, see: https://github.com/jupyter-widgets/pythreejs/issues/154 """ import pythreejs as pjs key_elements = {} group_elements = pjs.Group() key_elements["group_elements"] = group_elements unique_atom_sets = {} for el in element_groups["atoms"]: element_hash = ( ("radius", el.sradius), ("color", el.color), ("fill_opacity", el.fill_opacity), ("stroke_color", el.get("stroke_color", "black")), ("ghost", el.ghost), ) unique_atom_sets.setdefault(element_hash, []).append(el) group_atoms = pjs.Group() group_ghosts = pjs.Group() atom_geometries = {} atom_materials = {} outline_materials = {} for el_hash, els in unique_atom_sets.items(): el = els[0] data = dict(el_hash) if reuse_objects: atom_geometry = atom_geometries.setdefault( el.sradius, pjs.SphereBufferGeometry(radius=el.sradius, widthSegments=30, heightSegments=30), ) else: atom_geometry = pjs.SphereBufferGeometry(radius=el.sradius, widthSegments=30, heightSegments=30) if reuse_objects: atom_material = atom_materials.setdefault( (el.color, el.fill_opacity), pjs.MeshLambertMaterial(color=el.color, transparent=True, opacity=el.fill_opacity), ) else: atom_material = pjs.MeshLambertMaterial(color=el.color, transparent=True, opacity=el.fill_opacity) if use_atom_arrays: atom_mesh = pjs.Mesh(geometry=atom_geometry, material=atom_material) atom_array = pjs.CloneArray( original=atom_mesh, positions=[e.position.tolist() for e in els], merge=False, ) else: atom_array = [ pjs.Mesh( geometry=atom_geometry, material=atom_material, position=e.position.tolist(), name=e.info_string, ) for e in els ] data["geometry"] = atom_geometry data["material_body"] = atom_material if el.ghost: key_elements["group_ghosts"] = group_ghosts group_ghosts.add(atom_array) else: key_elements["group_atoms"] = group_atoms group_atoms.add(atom_array) if el.get("stroke_width", 1) > 0: if reuse_objects: outline_material = outline_materials.setdefault( el.get("stroke_color", "black"), pjs.MeshBasicMaterial( color=el.get("stroke_color", "black"), side="BackSide", transparent=True, opacity=el.get("stroke_opacity", 1.0), ), ) else: outline_material = pjs.MeshBasicMaterial( color=el.get("stroke_color", "black"), side="BackSide", transparent=True, opacity=el.get("stroke_opacity", 1.0), ) # TODO use stroke width to dictate scale if use_atom_arrays: outline_mesh = pjs.Mesh( geometry=atom_geometry, material=outline_material, scale=(1.05, 1.05, 1.05), ) outline_array = pjs.CloneArray( original=outline_mesh, positions=[e.position.tolist() for e in els], merge=False, ) else: outline_array = [ pjs.Mesh( geometry=atom_geometry, material=outline_material, position=e.position.tolist(), scale=(1.05, 1.05, 1.05), ) for e in els ] data["material_outline"] = outline_material if el.ghost: group_ghosts.add(outline_array) else: group_atoms.add(outline_array) key_elements.setdefault("atom_arrays", []).append(data) group_elements.add(group_atoms) group_elements.add(group_ghosts) group_labels = add_labels(element_groups, key_elements, use_label_arrays) group_elements.add(group_labels) if len(element_groups["cell_lines"]) > 0: cell_line_mat = pjs.LineMaterial( linewidth=1, color=element_groups["cell_lines"].group_properties["color"]) cell_line_geo = pjs.LineSegmentsGeometry(positions=[ el.position.tolist() for el in element_groups["cell_lines"] ]) cell_lines = pjs.LineSegments2(geometry=cell_line_geo, material=cell_line_mat) key_elements["cell_lines"] = cell_lines group_elements.add(cell_lines) if len(element_groups["bond_lines"]) > 0: bond_line_mat = pjs.LineMaterial( linewidth=element_groups["bond_lines"]. group_properties["stroke_width"], vertexColors="VertexColors", ) bond_line_geo = pjs.LineSegmentsGeometry( positions=[ el.position.tolist() for el in element_groups["bond_lines"] ], colors=[[Color(c).rgb for c in el.color] for el in element_groups["bond_lines"]], ) bond_lines = pjs.LineSegments2(geometry=bond_line_geo, material=bond_line_mat) key_elements["bond_lines"] = bond_lines group_elements.add(bond_lines) group_millers = pjs.Group() if len(element_groups["miller_lines"]) or len( element_groups["miller_planes"]): key_elements["group_millers"] = group_millers if len(element_groups["miller_lines"]) > 0: miller_line_mat = pjs.LineMaterial( linewidth=3, vertexColors="VertexColors" # TODO use stroke_width ) miller_line_geo = pjs.LineSegmentsGeometry( positions=[ el.position.tolist() for el in element_groups["miller_lines"] ], colors=[[Color(el.stroke_color).rgb] * 2 for el in element_groups["miller_lines"]], ) miller_lines = pjs.LineSegments2(geometry=miller_line_geo, material=miller_line_mat) group_millers.add(miller_lines) for el in element_groups["miller_planes"]: vertices = el.position.tolist() faces = [( 0, 1, 2, triangle_normal(vertices[0], vertices[1], vertices[2]), "black", 0, )] if len(vertices) == 4: faces.append(( 2, 3, 0, triangle_normal(vertices[2], vertices[3], vertices[0]), "black", 0, )) elif len(vertices) != 3: raise NotImplementedError("polygons with more than 4 points") plane_geom = pjs.Geometry(vertices=vertices, faces=faces) plane_mat = pjs.MeshBasicMaterial( color=el.fill_color, transparent=True, opacity=el.fill_opacity, side="DoubleSide", ) plane_mesh = pjs.Mesh(geometry=plane_geom, material=plane_mat) group_millers.add(plane_mesh) group_elements.add(group_millers) scene = pjs.Scene(background=None) scene.add([group_elements]) view_width, view_height = canvas_size minp, maxp = element_groups.get_position_range() # compute a minimum camera distance, that is guaranteed to encapsulate all elements camera_dist = maxp[2] + sqrt(maxp[0]**2 + maxp[1]**2) / tan( radians(camera_fov / 2)) camera = pjs.PerspectiveCamera( fov=camera_fov, position=[0, 0, camera_dist], aspect=view_width / view_height, zoom=zoom, ) scene.add([camera]) ambient_light = pjs.AmbientLight(color="lightgray") key_elements["ambient_light"] = ambient_light direct_light = pjs.DirectionalLight(position=(maxp * 2).tolist()) key_elements["direct_light"] = direct_light scene.add([camera, ambient_light, direct_light]) camera_control = pjs.OrbitControls(controlling=camera, screenSpacePanning=True) atom_picker = pjs.Picker(controlling=group_atoms, event="dblclick") key_elements["atom_picker"] = atom_picker material = pjs.SpriteMaterial( map=create_arrow_texture(right=False), transparent=True, depthWrite=False, depthTest=False, ) atom_pointer = pjs.Sprite(material=material, scale=(4, 3, 1), visible=False) scene.add(atom_pointer) key_elements["atom_pointer"] = atom_pointer renderer = pjs.Renderer( camera=camera, scene=scene, controls=[camera_control, atom_picker], width=view_width, height=view_height, alpha=True, clearOpacity=background_opacity, clearColor=background_color, ) return renderer, key_elements
def create_world_axes(camera, controls, initial_rotation=np.eye(3), length=30, width=3, camera_fov=10): """Create a renderer, containing an axes and camera that is synced to another camera. adapted from http://jsfiddle.net/aqnL1mx9/ Parameters ---------- camera : pythreejs.PerspectiveCamera controls : pythreejs.OrbitControls initial_rotation : list or numpy.array initial rotation of the axes length : int length of axes lines width : int line width of axes Returns ------- pythreejs.Renderer """ import pythreejs as pjs canvas_width = length * 2 canvas_height = length * 2 ax_scene = pjs.Scene() group_ax = pjs.Group() # NOTE: could use AxesHelper, but this does not allow for linewidth seletion # TODO: add arrow heads (ArrowHelper doesn't seem to work) ax_line_mat = pjs.LineMaterial(linewidth=width, vertexColors="VertexColors") ax_line_geo = pjs.LineSegmentsGeometry( positions=[[[0, 0, 0], length * r / np.linalg.norm(r)] for r in initial_rotation], colors=[[Color(c).rgb] * 2 for c in ("red", "green", "blue")], ) ax_lines = pjs.LineSegments2(geometry=ax_line_geo, material=ax_line_mat) group_ax.add(ax_lines) ax_scene.add([group_ax]) camera_dist = length / tan(radians(camera_fov / 2)) ax_camera = pjs.PerspectiveCamera(fov=camera_fov, aspect=canvas_width / canvas_height, near=1, far=1000) ax_camera.up = camera.up ax_renderer = pjs.Renderer( scene=ax_scene, camera=ax_camera, width=canvas_width, height=canvas_height, alpha=True, clearOpacity=0.0, clearColor="white", ) def align_axes(change=None): """Align axes to world.""" # TODO: this is not working correctly for TrackballControls, when rotated upside-down # (OrbitControls enforces the camera up direction, # so does not allow the camera to rotate upside-down). # TODO how could this be implemented on the client (js) side? new_position = np.array(camera.position) - np.array(controls.target) new_position = camera_dist * new_position / np.linalg.norm( new_position) ax_camera.position = new_position.tolist() ax_camera.lookAt(ax_scene.position) align_axes() camera.observe(align_axes, names="position") controls.observe(align_axes, names="target") ax_scene.observe(align_axes, names="position") return ax_renderer