예제 #1
0
def get_pauli_expectation(c: Circuit,
                          initial_circuit: Circuit,
                          pauli_string: str,
                          backend,
                          shots: int = 100) -> float:
    n_qubits = len(pauli_string)
    circuit = initial_circuit.copy()
    circuit.add_circuit(c.copy(), list(range(n_qubits)))
    black_box_exp = backend.get_pauli_expectation_value(
        circuit, [(i, pauli_string[i])
                  for i in range(len(pauli_string)) if pauli_string[i] != "I"],
        shots=shots).real
    return black_box_exp
예제 #2
0
def mnot_templates(n_controls):
    if n_controls == 0:
        return Circuit(1)
    c1 = Circuit(2)
    c1.CX(0, 1)
    c1.add_circuit(c1.copy(), [0, 1])
    if n_controls == 1:
        return c1
    c2 = Circuit(3)
    c2.CX(1, 2)
    c2.CX(0, 1)
    c2.CX(1, 2)
    c2.CX(0, 1)
    c2.CX(0, 2)
    circs = [c1, c2]
    for i in range(3, n_controls + 1):
        c = Circuit(i + 1)
        c.CX(i - 1, i)
        c.CX(i - 1, i)
        c.add_circuit(circs[-1], list(range(i)))
        c.CX(i - 1, i)
        c.CX(i - 1, i)
        c.add_circuit(circs[-1], list(range(i)))
        c.add_circuit(circs[-1], list(range(i - 1)) + [i])
        c.add_circuit(circs[-1], list(range(i - 1)) + [i])
        circs.append(c)
    return circs
예제 #3
0
def from_pytket(circuit: pytket.Circuit) -> cirq.Circuit:
    """Returns a Mitiq circuit equivalent to the input pytket circuit.

    Args:
        circuit: pytket circuit to convert to a Mitiq circuit.

    Returns:
        Mitiq circuit representation equivalent to the input pytket circuit.
    """
    rebased_circuit = circuit.copy()
    RebaseCirq().apply(rebased_circuit)
    return tk_to_cirq(rebased_circuit)
예제 #4
0
def get_pauli_expectation_ibmq(circuit_string: Iterable[Any], initial_circuit: Circuit, pauli_string: str, *,
                             shots: int = 4096, key: Dict[Any, Callable] = None) -> float:
    n_qubits = len(pauli_string)
    if pauli_string == "I" * n_qubits:
        return 1
    circuit = initial_circuit.copy()
    circuit.add_circuit(circuit_from_string(circuit_string, n_qubits=n_qubits, key=key), list(range(n_qubits)))
    for i in range(n_qubits):
        circuit.add_circuit(final_circuits[pauli_string[i]].copy(), [i])
    circuit.measure_all()
    noisy_shots = backend.get_counts(circuit, shots)
    return sum(v * (-1) ** sum(k) for k, v in noisy_shots.items())/shots
예제 #5
0
def test_implicit_perm() -> None:
    c = Circuit(2)
    c.CX(0, 1)
    c.CX(1, 0)
    c.Ry(0.1, 1)
    c1 = c.copy()
    CliffordSimp().apply(c1)
    b = MyBackend()
    b.compile_circuit(c)
    b.compile_circuit(c1)
    assert c.implicit_qubit_permutation() != c1.implicit_qubit_permutation()
    for bo in [BasisOrder.ilo, BasisOrder.dlo]:
        s = b.get_state(c, bo)
        s1 = b.get_state(c1, bo)
        assert np.allclose(s, s1)
예제 #6
0
    def run(self,
            circuit: Circuit,
            shots: int,
            fit_to_constraints: bool = True) -> np.ndarray:
        """Run a circuit on the Rigetti QVM or a QCS device.

        :param circuit: The circuit to run
        :param shots: Number of shots (repeats) to run
        :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True
        :return: Table of shot results, each row is a shot, columns are ordered by qubit ordering. Values are 0 or 1, corresponding to qubit basis states.
        """
        c = circuit.copy()
        if fit_to_constraints:
            phys_c = route(c, self._architecture)
            phys_c.decompose_SWAP_to_CX()
            Transform.OptimisePostRouting().apply(phys_c)
            Transform.RebaseToQuil().apply(c)
        p = tk_to_pyquil(c)
        p.wrap_in_numshots_loop(shots)
        ex = self._qc.compiler.native_quil_to_executable(p)
        return np.asarray(self._qc.run(ex))
예제 #7
0
# We can use the Placement objects to either modify the circuit in place, or return the mapping as a QubitMap.

lp_athens = LinePlacement(athens_device)
graph_athens = GraphPlacement(athens_device)
noise_athens = NoiseAwarePlacement(athens_device)

print("LinePlacement map:")
print_qubit_mapping(lp_athens.get_placement_map(example_circuit))
print("GraphPlacement map:")
print_qubit_mapping(graph_athens.get_placement_map(example_circuit))
print("NoiseAwarePlacement map:")
print_qubit_mapping(noise_athens.get_placement_map(example_circuit))

# Each of these methods produces a different qubit->node mapping.  Lets compare their performance:

lp_ex_circ = example_circuit.copy()
lp_athens.place(lp_ex_circ)
gp_ex_circ = example_circuit.copy()
graph_athens.place(gp_ex_circ)
np_ex_circ = example_circuit.copy()
noise_athens.place(np_ex_circ)

line_routed_circuit = route(lp_ex_circ, athens_device)
graph_routed_circuit = route(gp_ex_circ, athens_device)
noise_aware_routed_circuit = route(np_ex_circ, athens_device)

for c in [
        line_routed_circuit, graph_routed_circuit, noise_aware_routed_circuit
]:
    Transform.DecomposeBRIDGE().apply(c)
    Transform.DecomposeSWAPtoCX().apply(c)
예제 #8
0
# So to demonstrate the Entanglement Swapping protocol, we just need to run this on one side of a Bell pair.

es = Circuit()
ava = es.add_q_register("a", 1)
bella = es.add_q_register("b", 2)
charlie = es.add_q_register("c", 1)
data = es.add_c_register("d", 2)

# Bell state between Ava and Bella:

es.H(ava[0])
es.CX(ava[0], bella[0])

# Teleport `bella[0]` to `charlie[0]`:

tel_to_c = qtel.copy()
tel_to_c.rename_units({alice[0]: bella[0], alice[1]: bella[1], bob[0]: charlie[0]})
es.append(tel_to_c)

print(es.get_commands())

# Let's start by running a noiseless simulation of this to verify that what we get looks like a Bell pair.

from pytket.extensions.qiskit import AerBackend

# Connect to a simulator:

backend = AerBackend()

# Make a ZZ measurement of the Bell pair: