def read(cls, cleftId, bound1Id, bound2Id, file, clean=True, byteOrder=None, dataType=None, arrayOrder=None, shape=None): """ Reads segmented image (label filed) from a file and sets required ids. Each of the id args (cleftId, bound1Id, bound2Id) can be a single int or a list (array) in which cases a (boundary or cleft) is formed form all specified ids. If file is in em or mrc format (file extension em or mrc) only the file argument is needed. If the file is in the raw data format (file extension raw) all arguments are required. Arguments: - bound1Id, bound2Id, cleftId: ids of boundaries 1, 2 and cleft - file: file name - clean: if true, only the segments corresponding to ids are kept - byteOrder: '<' (little-endian), '>' (big-endian) - dataType: any of the numpy types, e.g.: 'int8', 'int16', 'int32', 'float32', 'float64' - arrayOrder: 'C' (z-axis fastest), or 'F' (x-axis fastest) - shape: (x_dim, y_dim, z_dim) Returns: - instance of Segment """ # read file from pyto.io.image_io import ImageIO as ImageIO fi = ImageIO() fi.read(file=file, byteOrder=byteOrder, dataType=dataType, arrayOrder=arrayOrder, shape=shape) # make new instance cleft = cls(data=fi.data, cleftId=cleftId, bound1Id=bound1Id, bound2Id=bound2Id, copy=False, clean=clean) return cleft
def fix(self, mode=None, microscope=None, out=None, pad=0, start=1): """ Fixes wrong data in headers. Mode determines which values are fixed. Currently defined modes are: - 'polara_fei-tomo': images obtained on Polara (at MPI of Biochemistry) using FEI tomography package and saved in EM format. - 'krios_fei-tomo': images obtained on Krios (at MPI of Biochemistry) using FEI tomography package and saved in EM format. - 'cm300': images from cm300 in EM format - None: doesn't do anyhing If mode is 'polara_fei-tomo', then arg microscope has to be specified. The allowed values are specified in microscope_db.py. Currently (r564) these are: 'polara-1_01-07', 'polara-1_01-09' and 'polara-2_01-09'. Works for individual images only (not for stacks), because stacks are typically recorded by SerialEM and do not need fixing. Arguments: - out: directory where the fixed images are written. The fixed and the original images have the same base names. - mode: fix mode """ # parse arguments #if path is None: path = self.path #if mode is None: mode = self.mode # check for out, pad and start also? # make out directory if it doesn't exists if (out is not None) and (not os.path.isdir(out)): os.makedirs(out) # loop over images images_iter = self.images(out=out, pad=pad, start=start) for (in_path, out_path) in images_iter: # read image file image = ImageIO(file=in_path) image.read() # fix image.fix(mode=mode, microscope=microscope) # write fixed files image.write(file=out_path)
def testPixelSize(self): """ Tests pixel size in read and write """ # arrays #ar_int8_2 = numpy.arange(24, dtype='int8').reshape((4,3,2)) ar_int16_2 = numpy.arange(24, dtype='int16').reshape((4, 3, 2)) # file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_2, pixel=2.1) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_almost_equal(file_in.pixel, 2.1)
def read(cls, file, fileFormat=None, byteOrder=None, dataType=None, arrayOrder=None, shape=None, header=False, memmap=False): """ Reads image from a file and saves the data in numpy.array format. Images can be in em, mrc and raw format. Unless arg fileFormat is specified, file format is determined from the extension: - 'em' and 'EM' for em format - 'mrc', 'rec' and 'mrcs' for mrc format - 'raw', 'dat' and 'RAW' for raw format If file is in em or mrc format (file extension em or mrc) only the file argument is needed. If the file is in the raw data format (file extension raw) all arguments (except fileFormat) are required. If arg header is True, file header (em, mrc or raw) is saved as attribute header. In any case attribute fileFormat is set. For mrc and em files, array order is determined from arg arrayOrder, from self.arrayOrder, or it is set to the default ("F") in this order. Data is read according the determined array order. That is, array order is not read from the file header. If arg memmap is True, instead into a nparray, the data is read to a memory map. That means that the complete data is not read into the memory, but the required parts are read on demand. This is useful when working with large images, but might not always work properly because the memory map is not quite properly a subclass of numpy.ndarray (from Numpy doc). Data from mrc files is always read as 3D because mrc header always contains lengths for all three dimensions (the length of the last dimeension is 1 for 2D images). In such cases one can obtain the 2D ndarray using: self.data.reshape(self.data.shape[0:2]) Sets attributes: - data: (ndarray) image data - pixelsize: (float or list of floats) pixel size in nm, 1 if pixel size not known - length: (list or ndarray) length in each dimension in nm - fileFormat: file format ('em', 'mrc', or 'raw') - memmap: from the argument - header: header Arguments: - file: file name - fileFormat: 'em', 'mrc', or 'raw' - byteOrder: '<' (little-endian), '>' (big-endian) - dataType: any of the numpy types, e.g.: 'int8', 'int16', 'int32', 'float32', 'float64' - arrayOrder: 'C' (z-axis fastest), or 'F' (x-axis fastest) - shape: (x_dim, y_dim, z_dim) - header: flag indicating if file header is read and saved - memmap: Flag indicating if the data is read to a memory map, instead of reading it into a ndarray Returns: - instance of this class """ # read file from pyto.io.image_io import ImageIO as ImageIO fi = ImageIO() fi.read( file=file, fileFormat=fileFormat, byteOrder=byteOrder, dataType=dataType, arrayOrder=arrayOrder, shape=shape, memmap=memmap) # instantiate object and set fullInset object = cls(data=fi.data) # is this needed (ugly) object.saveFull() # save file header object.header = None if header: object.header = fi.header try: object.extendedHeaderString = fi.extendedHeaderString except AttributeError: object.extendedHeaderString = None object.fileFormat = fi.fileFormat # save pixel size try: object.pixelsize = fi.pixelsize except (AttributeError, ValueError): object.pixelsize = 1 # save length try: object.length = fi.length except (AttributeError, ValueError): object.length = numpy.asarray(fi.data.shape) \ * numpy.asarray(object.pixelsize) # save memmap object.memmap = fi.memmap # save file io object # removed because if object.data is changed, object.file_io.data will # still hold a copy of data #object.file_io = fi # save file type #try: # object.fileType = fi.fileType #except (AttributeError, ValueError): # object.fileType = None return object
def testRead(self): """ Tests reading EM and MRC files """ # EM tomo em = ImageIO() em.read(file=os.path.join(self.dir, "bin-2.em")) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(em.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(em.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(em.byteOrder, '<') np_test.assert_equal(em.arrayOrder, 'F') np_test.assert_equal(em.dataType, 'float32') np_test.assert_equal(em.data.dtype, numpy.dtype('float32')) np_test.assert_equal(em.memmap, False) # EM tomo with memory map em.read(file=os.path.join(self.dir, "bin-2.em"), memmap=True) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(em.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(em.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(em.byteOrder, '<') np_test.assert_equal(em.arrayOrder, 'F') np_test.assert_equal(em.dataType, 'float32') np_test.assert_equal(em.data.dtype, numpy.dtype('float32')) np_test.assert_equal(em.memmap, True) # EM, big-endian em = ImageIO() em.read(file=os.path.join(self.dir, "mac-file.em")) np_test.assert_equal(em.byteOrder, '>') # EM, little-endian em = ImageIO() em.read(file=os.path.join(self.dir, "pc-file.em")) np_test.assert_equal(em.byteOrder, '<') em.read(file=os.path.join(self.dir, "pc-file.em"), memmap=True) np_test.assert_equal(em.byteOrder, '<') # MRC tomo mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2.mrc")) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, False) # MRC tomo with memmap mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2.mrc"), memmap=True) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, True) # MRC tomo with extended header mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2_ext.mrc"), memmap=False) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, False) np_test.assert_equal(mrc.extendedHeaderLength, 5120) # MRC tomo with extended header and with memmap mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2_ext.mrc"), memmap=True) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, True) np_test.assert_equal(mrc.extendedHeaderLength, 5120) # another MRC tomo (generated by and) mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "and-tomo.mrc")) expected = numpy.array([[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [0.0844, -0.0400, -0.0716]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.0210, -0.0193, -0.0355]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 60], expected, decimal=4) np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, False) # another MRC tomo (generated by and) with memmap mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "and-tomo.mrc"), memmap=True) expected = numpy.array([[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [0.0844, -0.0400, -0.0716]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.0210, -0.0193, -0.0355]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 60], expected, decimal=4) np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, True) # mrc with the opposite byte order mrc2 = ImageIO() mrc2.read(file=os.path.join(self.dir, "swapped_byte_order.mrc")) expected = numpy.array([[0.000, 0.000], [-0.341, -6.702], [0.782, -11.780], [0.327, -14.298], [-0.691, -17.411], [-0.337, -18.076], [-0.669, -19.157], [-0.799, -20.400], [-0.793, -21.286], [-1.008, -21.386]]) np_test.assert_almost_equal(mrc2.data[:, :, 0], expected, decimal=3) np_test.assert_equal(mrc2.memmap, False) raised = False try: mrc2.read(file=os.path.join(self.dir, "swapped_byte_order.mrc"), memmap=True) except ValueError: raised = True np_test.assert_equal(raised, True) np_test.assert_equal(mrc2.memmap, True) # new style header mrc mrc_new = ImageIO() mrc_new.read(file=os.path.join(self.dir, 'new-head_int16.mrc')) np_test.assert_equal(mrc_new.dataType, 'int16') np_test.assert_equal(mrc_new.data.dtype, numpy.dtype('int16')) np_test.assert_equal(mrc_new.byteOrder, '<') np_test.assert_equal(mrc_new.arrayOrder, 'F') np_test.assert_equal(mrc_new.shape, (40, 30, 20)) np_test.assert_equal(mrc_new.pixel, [0.4, 0.4, 0.4]) np_test.assert_equal(mrc_new.pixelsize, 0.4) np_test.assert_equal(mrc_new.data[14, 8, 10], -14) np_test.assert_equal(mrc_new.data[15, 23, 12], 10) np_test.assert_equal(mrc_new.data[23, 29, 16], 2) np_test.assert_equal(mrc_new.memmap, False) # new style header mrc mrc_new = ImageIO() mrc_new.read(file=os.path.join(self.dir, 'new-head_int16.mrc'), memmap=True) np_test.assert_equal(mrc_new.dataType, 'int16') np_test.assert_equal(mrc_new.data.dtype, numpy.dtype('int16')) np_test.assert_equal(mrc_new.byteOrder, '<') np_test.assert_equal(mrc_new.arrayOrder, 'F') np_test.assert_equal(mrc_new.shape, (40, 30, 20)) np_test.assert_equal(mrc_new.pixel, [0.4, 0.4, 0.4]) np_test.assert_equal(mrc_new.pixelsize, 0.4) np_test.assert_equal(mrc_new.data[14, 8, 10], -14) np_test.assert_equal(mrc_new.data[15, 23, 12], 10) np_test.assert_equal(mrc_new.data[23, 29, 16], 2) np_test.assert_equal(mrc_new.memmap, True) np_test.assert_equal(mrc_new.n_labels, 9) np_test.assert_equal(len(mrc_new.labels), 9) desired = ( b"COMBINEFFT: Combined FFT from two tomograms " + b"07-Oct-13 17:15:24") np_test.assert_equal(len(mrc_new.labels[3]), 80) np_test.assert_equal(mrc_new.labels[3][:len(desired)], desired) desired = ( b"NEWSTACK: Images copied 10-Oct-13 18:00:03" ) np_test.assert_equal(len(mrc_new.labels[6]), 80) np_test.assert_equal(mrc_new.labels[6][:len(desired)], desired) # test raw file raw = ImageIO() raw.read(file=self.raw_file_name, dataType=self.raw_dtype, shape=self.raw_shape) np_test.assert_equal(raw.data, self.raw_data) np_test.assert_equal(raw.memmap, False) # test raw file with memmap raw = ImageIO() raw.read(file=self.raw_file_name, dataType=self.raw_dtype, shape=self.raw_shape, memmap=True) np_test.assert_equal(raw.data, self.raw_data) np_test.assert_equal(raw.memmap, True)
def testWrite(self): """ Tests write (and implicitly read), for em, mrc and raw format. """ # arrays ar_uint8 = numpy.array([54, 200, 5, 7, 45, 123], dtype='uint8').reshape((3, 1, 2)) ar_int8 = numpy.array([54, 2, -5, 7, 45, 123], dtype='uint8').reshape( (3, 1, 2)) ar_uint16 = numpy.array([1034, 546, 248, 40000, 2345, 365, 4876, 563], dtype='uint16').reshape((2, 2, 2)) ar_int16 = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16').reshape((2, 2, 2)) ar_int32 = numpy.array( [1034, 56546, -223448, 156, 2345, 2**31 - 10, -884876, 563], dtype='int32').reshape((2, 2, 2)) ar_uint32 = numpy.array( [1034, 56546, 223448, 156, 2345, 365, 884876, 2**32 - 10], dtype='uint32').reshape((2, 2, 2)) ar_int8_2 = numpy.arange(24, dtype='int8').reshape((4, 3, 2)) ar_int16_2 = numpy.arange(24, dtype='int16').reshape((4, 3, 2)) ar2_int16 = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16').reshape((2, 4)) ar_int16_f = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16', order='F').reshape((2, 2, 2)) ar_int16_c = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16', order='C').reshape((2, 2, 2)) # em uint8 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint8) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint8') np_test.assert_equal(file_in.data, ar_uint8) # em uint16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint16) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint16') np_test.assert_equal(file_in.data, ar_uint16) # em int16 converted to int32, safe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int16, dataType='int32', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'int32') np_test.assert_equal(file_in.data, ar_int16) # em int16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_int16, 'casting': 'safe' }) # em int16 converted to uint16, unsafe casting file_out = ImageIO() print("int16 to uint16") file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int16, dataType='uint16', casting='unsafe') print("int16 to uint16 end") file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint16') np_test.assert_equal(file_in.data.dtype, numpy.dtype('uint16')) np_test.assert_equal(file_in.data[0, 1, 0] == ar_int16[0, 1, 0], False) # em int16 to uint16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_int16, 'dataType': 'uint16', 'casting': 'safe' }) # em uint16 to int16, unsafe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_uint16, 'dataType': 'int16', 'casting': 'unsafe' }) # em uint32 to int32, safe casting print("uint32 to int32 safe") file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_uint32, 'dataType': 'int32', 'casting': 'safe' }) # em uint32 converted to int32, unsafe casting print("uint32 to int32") file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint32, dataType='int32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'int32') #np_test.assert_equal(file_in.data, ar_uint32) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0], True) np_test.assert_equal(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1], False) # em uint32 to float32, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_uint32, 'dataType': 'float32', 'casting': 'safe' }) # em uint32 to float32, unsafe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint32, dataType='float32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float32') #np_test.assert_almost_equal(file_in.data, ar_uint32) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0], True) np_test.assert_equal(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1], False) # em int32 to float32, unsafe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int32, dataType='float32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float32') #np_test.assert_almost_equal(file_in.data, ar_int32) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_int32[0, 0, 0], True) np_test.assert_equal(file_in.data[1, 0, 1] == ar_int32[1, 0, 1], False) # em int32 to float64, safe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int32, dataType='float64', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float64') np_test.assert_almost_equal(file_in.data, ar_int32) # mrc data type and shape from args file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int8_2, shape=(2, 3, 4), dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (2, 3, 4)) # mrc data type and shape from previously given data file_out = ImageIO() file_out.setData(ar_int16_2) file_out.write(file=os.path.join(self.dir, '_test.mrc')) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (4, 3, 2)) # mrc data type and shape from attributes file_out = ImageIO() file_out.data = ar_int8_2 file_out.shape = (2, 3, 4) file_out.dataType = 'int16' file_out.write(file=os.path.join(self.dir, '_test.mrc')) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (2, 3, 4)) # mrc data type and shape from data file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_2) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (4, 3, 2)) # mrc uint8, same as ubyte file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_uint8) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'ubyte') np_test.assert_almost_equal(file_in.data, ar_uint8) # mrc uint16 file_out = ImageIO() np_test.assert_raises((KeyError, TypeError), file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_uint16 }) # mrc uint16 to int16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_uint16, 'dataType': 'ubyte', 'casting': 'safe' }) # mrc uint16 to int16, unsafe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_uint16, dataType='int16', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') #np_test.assert_almost_equal(file_in.data, ar_uint16) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_uint16[0, 0, 0], True) np_test.assert_equal(file_in.data[0, 1, 1] == ar_uint16[0, 1, 1], False) # mrc int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, pixel=2.3) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int16) np_test.assert_equal(file_in.pixel, [2.3, 2.3, 2.3]) np_test.assert_equal(file_in.pixelsize, 2.3) # mrc int16 2D file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar2_int16, pixel=3.4) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data[:, :, 0], ar2_int16) np_test.assert_equal(file_in.pixelsize, 3.4) # mrc int8 to int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int8, dataType='int16', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int8) # mrc int32 file_out = ImageIO() np_test.assert_raises((KeyError, TypeError), file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32 }) # mrc int32 to int16 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32, 'dataType': 'int16', 'casting': 'safe' }) # mrc int32 to float32 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32, 'dataType': 'float32', 'casting': 'safe' }) # mrc int32 to complex64 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32, 'dataType': 'complex64', 'casting': 'safe' }) # raw int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.raw'), data=ar_int16) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.raw'), dataType='int16', shape=(2, 2, 2)) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int16) # raw int8 to int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.raw'), data=ar_int8, dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.raw'), dataType='int16', shape=(3, 1, 2)) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int8) # raw int16 to int8 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.raw'), 'data': ar_int16, 'dataType': 'int8', 'casting': 'safe' }) # explain error messages printed before print("It's fine if few error messages were printed just before " + "this line, because they have been caught.") # shape param file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (2, 2, 2)) file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16', shape=(1, 4, 2)) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (1, 4, 2)) file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16', shape=(4, 2)) file_in.readHeader(file=os.path.join(self.dir, '_test.mrc')) file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (4, 2, 1)) file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16', shape=(2, 2, 2)) np_test.assert_equal(file_in.data.shape, (2, 2, 2)) # array order C, read write default (F) file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_c) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.data, ar_int16_c) # array order C, read write C file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_c, arrayOrder='C') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), arrayOrder='C') np_test.assert_equal(file_in.data, ar_int16_c) # array order F, read write default (F) file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_f) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.data, ar_int16_f) # array order F, read write F file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_f, arrayOrder='F') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), arrayOrder='F') np_test.assert_equal(file_in.data, ar_int16_f)
def sort(self, seq=None, out=None, pad=0, start=1, fix_mode=None, microscope=None, limit=None, limit_mode='std', size=5, byte_order=None, test=False): """ Sorts series, fixes image headers, corrects the data and writes the sorted and corrected images. A series is sorted by tilt angle that is read from each image, or by the elements of seq (not necessarily angles) if given. Sorted images names have the form: directory/name + number + extension. where out is: directory/name_.extension and numbers start with start argument and are padded with pad (argument) number of zeros (see self.images). Argument fix_mode detemines how the headers are fixed: - None: no fixing - 'polara_fei-tomo': for series obtained on polara with the FEI tomo software - 'krios_fei-tomo': for series obtained on krios with the FEI tomo software - 'cm300': for series from CM300 (see pyto.io.image_io). If fix_mode is 'polara_fei-tomo', then arg microscope has to be specified. The allowed values are specified in microscope_db.py. Currently (r564) these are: 'polara-1_01-07', 'polara-1_01-09' and 'polara-2_01-09'. If fix_mode is None, microscope does nor need to be specified. Series recorded by SerialEM typically do not need fixing. Works for individual images only (not for stacks). Arguments: - seq: if specified this sequence used for sorting projection, otherwise tilt angles are used - out: sorted series path - pad: number of digits of a projection number in the sorted series file name - start: start number for sorted series file names - fix_mode: determined if and how headers are fixed - microscope: microscope type, see pyto.io.microscope_db - limit_mode: 'abs' or 'std' - limit: absolute greyscale limit if limit_mode is 'abs', or the number of stds above and below the mean - size: size of the subarray used to find the replacement value for a voxel that's out of the limits - byte_order: '<' or '>', default is the byte order of the machine - test: if True all steps are done except writing corrected images """ # shortcuts path = self.path match_mode = self.mode # make tilt angles - file names dictionary # ToDo: use self.sortPath() instead in_paths = [] images_iter = self.images(mode=match_mode) if seq is None: seq = [] # get tilt angles from file headers for in_path in images_iter: image = ImageIO(file=in_path) image.readHeader() seq.append(image.tiltAngle) in_paths.append(in_path) image.file_.close() else: # use seq to sort for in_path in images_iter: in_paths.append(in_path) # sort (note: dictionary angle:in_path fails for multiple files with # same angles) seq_arr = numpy.array(seq) in_paths_arr = numpy.array(in_paths) sort_ind = seq_arr.argsort() sorted_seq = seq_arr[sort_ind] sorted_in_paths = in_paths_arr[sort_ind] # parse out and make out directory if it doesn't exists if out is not None: out_dir, out_base_pat = os.path.split(out) if out_dir == '': out_dir = '.' if (not test) and (not os.path.isdir(out_dir)): os.makedirs(out_dir) else: out_path = None # initialize file counter if start is None: ind = None else: ind = start - 1 # loop over sorted in files for (item, in_path) in zip(sorted_seq, sorted_in_paths): if ind is not None: ind += 1 # parse in file path in_dir, in_base = os.path.split(in_path) if out is not None: # make out file path out_base = self.convertBase(in_base=in_base, out_base=out_base_pat, pad=pad, index=ind) out_path = os.path.join(out_dir, out_base) # read files im_io = ImageIO(file=in_path) im_io.read() # log logging.info("%5.1f: %s -> %s %6.1f %6.1f" \ % (item, in_path, out_path, \ im_io.data.mean(), im_io.data.std())) # fix if fix_mode is not None: im_io.fix(mode=fix_mode, microscope=microscope) # limit if limit is not None: image = Image(im_io.data) image.limit(limit=limit, mode=limit_mode, size=size) # write fixed file if not test: if byte_order is None: byte_order = im_io.machineByteOrder im_io.write(file=out_path, byteOrder=byte_order, data=image.data) else: logging.info(" " + str(item) + ": " + in_path + " -> "\ + str(out_path))