class FRMJob(PyTomClass): # i need to rename the class, but for now it works def __init__(self, pl=None, ref=None, mask=None, peak_offset=0, sample_info=None, bw_range=None, freq=None, dest='.', max_iter=10, r_score=False, weighting=False, bfactor=None, symmetries=None, adaptive_res=0.1, fsc_criterion=0.5, constraint=None, binning=1): """ initiate FRM job @param pl: particle list @type ps: L{pytom.basic.structures.ParticleList} @param ref: reference density @type ref: L{pytom.basic.structures.Reference} @param mask: mask @type ref: L{pytom.basic.structures.Mask} @param peak_offset: peak offset in voxel @type peak_offset: C{int} @param sample_info: ?? (Default: None) @type sample_info: ?? @param bw_range: bandwidth range in pixel (2-dim vector) @type bw_range: C{list} @param freq: frequency (default: None) @type: C{int} @param dest: distination directory (default: '.') @type: C{str} @param max_iter: maximum number of iterations @type max_iter: C{int} @param r_score: use r_score (??) (default: False) @type r_score: C{bool} @param weighting: weighting (default: False) @type weighting: C{bool} @param bfactor: B-factor (default: None) @type bfactor: C{float}? @param symmetries: symmetry (default: None) @type L{pytom.basic.structures.Symmetries} @param adaptive_res: adaptive resolution - add to resolution for filtering @type adaptive_res: C{float} @param fsc_criterion: FSC criterion (default: 0.5) @type fsc_criterion: C{float} @param constraint: Constraint on orientations (deafult: None) @type constraint: ?? @param binning: Perform binning (downscale) of subvolumes by factor. Default=1. @type binning C{float} """ self.particleList = pl self.reference = ref self.mask = mask self.peak_offset = peak_offset self.sampleInformation = sample_info self.bw_range = bw_range self.freq = freq self.destination = dest self.max_iter = max_iter self.r_score = r_score self.weighting = weighting self.bfactor = bfactor self.symmetries = symmetries self.adaptive_res = adaptive_res self.fsc_criterion = fsc_criterion self.constraint = constraint self.binning = binning def fromXML(self, xmlObj): """ read from xml file @param xmlObj: xml object @type xmlObj: L{lxml.etree.Element} """ from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation, MultiSymmetries pl = ParticleList('.') particleList_element = jobDescription.xpath('ParticleList') if len(particleList_element) > 0: pl.fromXML(particleList_element[0]) else: list_elements = jobDescription.xpath('ParticleListLocation') for e in list_elements: sub_pl = ParticleList() sub_pl.fromXMLFile(e.get('Path')) pl += sub_pl self.particleList = pl r = jobDescription.xpath('Reference')[0] self.reference = Reference('') self.reference.fromXML(r) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') self.binning = int(jobDescription.get('binning')) if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value # for the constraint try: from sh_alignment.constrained_frm import AngularConstraint con = jobDescription.xpath('AngularConstraint') if len(con) != 0: ac = AngularConstraint() c = ac.fromXML(con[0]) self.constraint = c else: self.constraint = None except: self.constraint = None def toXML(self): """ copy to xml structure @return: xml object for job @rtype L{lxml.etree.Element} """ from lxml import etree jobElement = etree.Element("FRMJob") jobElement.append(self.particleList.toXML()) jobElement.append(self.reference.toXML()) jobElement.append(self.mask.toXML()) jobElement.append(self.sampleInformation.toXML()) if self.symmetries is not None: jobElement.append(self.symmetries.toXML()) jobElement.set("PeakOffset", str(self.peak_offset)) jobElement.set("BandwidthRange", str(self.bw_range)) jobElement.set("Frequency", str(self.freq)) jobElement.set("Destination", self.destination) jobElement.set("MaxIterations", str(self.max_iter)) jobElement.set("RScore", str(self.r_score)) jobElement.set("WeightedAverage", str(self.weighting)) jobElement.set("BFactor", str(self.bfactor)) jobElement.set("binning", str(self.binning)) if self.adaptive_res is False: jobElement.set("AdaptiveResolution", '+1') else: jobElement.set("AdaptiveResolution", str(self.adaptive_res)) jobElement.set("FSC", str(self.fsc_criterion)) if self.constraint: jobElement.append(self.constraint.toXML()) return jobElement def check(self): from pytom.tools.files import checkDirExists self.particleList.check() self.reference.check() self.mask.check() if not checkDirExists(self.destination): raise RuntimeError('Destination path not found! ' + self.destination)
class CTFCorrectionJob(PyTomClass): """For the worker to actually run. """ def __init__(self, pl=None, ctf_conv_pl=None, ref=None, mask=None, peak_offset=0, sample_info=None, bw_range=None, freq=None, dest='.', max_iter=10, r_score=False, weighting=False, bfactor=None, sum_ctf_sqr=None): self.particleList = pl self.ctf_conv_pl = ctf_conv_pl if ref is None: self.reference = [] else: self.reference = ref self.mask = mask self.peak_offset = peak_offset self.sampleInformation = sample_info self.bw_range = bw_range self.freq = freq self.destination = dest self.max_iter = max_iter self.r_score = r_score self.weighting = weighting self.bfactor = bfactor self.sum_ctf_sqr = sum_ctf_sqr def fromXML(self, xmlObj): from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "CTFCorrectionJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('CTFCorrectionJob') if len(jobDescription) == 0: raise Exception("This XML is not a CTFCorrectionJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation particleList_element = jobDescription.xpath('ParticleList')[0] pl = ParticleList('.') pl.fromXML(particleList_element) self.particleList = pl self.reference = [] r = jobDescription.xpath('Reference') for ref_obj in r: ref = Reference('') ref.fromXML(ref_obj) self.reference.append(ref) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self._sampleInformation = SampleInformation() self.ctf_conv_pl = jobDescription.get('CTFConvolutedParticleList') self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') self.sum_ctf_sqr = jobDescription.get('CTFSquared') def toXML(self): from lxml import etree jobElement = etree.Element("CTFCorrectionJob") jobElement.append(self.particleList.toXML()) for ref in self.reference: jobElement.append(ref.toXML()) jobElement.append(self.mask.toXML()) jobElement.append(self.sampleInformation.toXML()) jobElement.set("CTFConvolutedParticleList", self.ctf_conv_pl) jobElement.set("PeakOffset", str(self.peak_offset)) jobElement.set("BandwidthRange", str(self.bw_range)) jobElement.set("Frequency", str(self.freq)) jobElement.set("Destination", self.destination) jobElement.set("MaxIterations", str(self.max_iter)) jobElement.set("RScore", str(self.r_score)) jobElement.set("WeightedAverage", str(self.weighting)) jobElement.set("BFactor", str(self.bfactor)) jobElement.set("CTFSquared", str(self.sum_ctf_sqr)) return jobElement
class FRMJob(PyTomClass): # i need to rename the class, but for now it works def __init__(self, pl=None, ref=None, mask=None, peak_offset=0, sample_info=None, bw_range=None, freq=None, dest='.', max_iter=10, r_score=False, weighting=False, bfactor=None, symmetries=None, adaptive_res=0.1, fsc_criterion=0.5, constraint=None): self.particleList = pl self.reference = ref self.mask = mask self.peak_offset = peak_offset self.sampleInformation = sample_info self.bw_range = bw_range self.freq = freq self.destination = dest self.max_iter = max_iter self.r_score = r_score self.weighting = weighting self.bfactor = bfactor self.symmetries = symmetries self.adaptive_res = adaptive_res self.fsc_criterion = fsc_criterion self.constraint = constraint def fromXML(self, xmlObj): from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation, MultiSymmetries pl = ParticleList('.') particleList_element = jobDescription.xpath('ParticleList') if len(particleList_element) > 0: pl.fromXML(particleList_element[0]) else: list_elements = jobDescription.xpath('ParticleListLocation') for e in list_elements: sub_pl = ParticleList() sub_pl.fromXMLFile(e.get('Path')) pl += sub_pl self.particleList = pl r = jobDescription.xpath('Reference')[0] self.reference = Reference('') self.reference.fromXML(r) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value # for the constraint try: from sh_alignment.constrained_frm import AngularConstraint con = jobDescription.xpath('AngularConstraint') if len(con) != 0: ac = AngularConstraint() c = ac.fromXML(con[0]) self.constraint = c else: self.constraint = None except: self.constraint = None def toXML(self): from lxml import etree jobElement = etree.Element("FRMJob") jobElement.append(self.particleList.toXML()) jobElement.append(self.reference.toXML()) jobElement.append(self.mask.toXML()) jobElement.append(self.sampleInformation.toXML()) if self.symmetries is not None: jobElement.append(self.symmetries.toXML()) jobElement.set("PeakOffset", str(self.peak_offset)) jobElement.set("BandwidthRange", str(self.bw_range)) jobElement.set("Frequency", str(self.freq)) jobElement.set("Destination", self.destination) jobElement.set("MaxIterations", str(self.max_iter)) jobElement.set("RScore", str(self.r_score)) jobElement.set("WeightedAverage", str(self.weighting)) jobElement.set("BFactor", str(self.bfactor)) if self.adaptive_res is False: jobElement.set("AdaptiveResolution", '+1') else: jobElement.set("AdaptiveResolution", str(self.adaptive_res)) jobElement.set("FSC", str(self.fsc_criterion)) if self.constraint: jobElement.append(self.constraint.toXML()) return jobElement def check(self): from pytom.tools.files import checkDirExists self.particleList.check() self.reference.check() self.mask.check() if not checkDirExists(self.destination): raise RuntimeError('Destination path not found! ' + self.destination)
class MultiDefocusJob(FRMJob): """For the entry of the whole procedure. """ def fromXML(self, xmlObj): # only rewrite this function from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": # the name is not changed here! jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import Reference, Mask, SampleInformation, MultiSymmetries particleList_element = jobDescription.xpath('ParticleListSet')[0] pl = ParticleListSet() pl.fromXML(particleList_element) self.particleList = pl # here i still use the original name! self.reference = [] r = jobDescription.xpath('Reference') for ref_obj in r: ref = Reference('') ref.fromXML(ref_obj) self.reference.append(ref) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value def check(self): for p in self.particleList.pairs: p.check()