예제 #1
0
파일: colab_util.py 프로젝트: asdfrv20/test
def set_renderer():
    # Setup
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)

    # Initialize an OpenGL perspective camera.
    R, T = look_at_view_transform(2.0, 0, 180) 
    cameras = OpenGLOrthographicCameras(device=device, R=R, T=T)

    raster_settings = RasterizationSettings(
        image_size=512, 
        blur_radius=0.0, 
        faces_per_pixel=1, 
        bin_size = None, 
        max_faces_per_bin = None
    )

    lights = PointLights(device=device, location=((2.0, 2.0, 2.0),))

    renderer = MeshRenderer(
        rasterizer=MeshRasterizer(
            cameras=cameras, 
            raster_settings=raster_settings
        ),
        shader=HardPhongShader(
            device=device, 
            cameras=cameras,
            lights=lights
        )
    )
    return renderer
예제 #2
0
    def __init__(self, meshes: Meshes, image_size=256, device='cuda'):
        """
        Initialization of MaskRenderer. Renderer is initialized with predefined rasterizer and shader.
        A soft silhouette shader is used to compute the projection mask.

        :param meshes: A batch of meshes. pytorch3d.structures.Meshes. Dimension meshes \in R^N.
                        View https://github.com/facebookresearch/pytorch3d/blob/master/pytorch3d/structures/meshes.py
                        for additional information.
                        In our case it is usually only one batch which is the template for a certain category.
        :param device: The device, on which the computation is done.
        :param image_size: Image size for the rasterization. Default is 256.
        """
        super(MaskRenderer, self).__init__()

        self.device = device
        self._meshes = meshes

        cameras = OpenGLOrthographicCameras(device=device)

        # parameter settings as of Pytorch3D Tutorial
        # (https://pytorch3d.org/tutorials/camera_position_optimization_with_differentiable_rendering)

        self._rasterizer = MeshRasterizer(
            cameras=cameras,
            raster_settings=RasterizationSettings(image_size=image_size))

        self._shader = SoftSilhouetteShader(
            blend_params=(BlendParams(sigma=1e-4, gamma=1e-4)))
예제 #3
0
def set_renderer(image_size=512, use_sfm=False):
    # Setup
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)

    # Initialize an OpenGL perspective camera.
    R, T = look_at_view_transform(2.0, 0, 180)
    if use_sfm:
        cameras = SfMPerspectiveCameras(focal_length=580.0,
                                        device=device,
                                        R=R,
                                        T=T)
    else:
        cameras = OpenGLOrthographicCameras(device=device, R=R, T=T)

    raster_settings = RasterizationSettings(image_size=image_size,
                                            blur_radius=0.0,
                                            faces_per_pixel=1,
                                            bin_size=None,
                                            max_faces_per_bin=None)

    lights = PointLights(device=device, location=((2.0, 2.0, 2.0), ))

    rasterizer = MeshRasterizer(cameras=cameras,
                                raster_settings=raster_settings)
    shader = HardPhongShader(device=device, cameras=cameras, lights=lights)
    if use_sfm:
        renderer = MeshRendererWithDepth(rasterizer=rasterizer, shader=shader)
    else:
        renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)
    return renderer
예제 #4
0
    def _get_projected_positions_of_sphere_points(self, sphere_points, rotation, translation):
        """
        For the given points on unit sphere calculates the 3D coordinates on the mesh template
        and projects them back to image plane

        :param sphere_points: A (B X 3 X H X W) tensor containing the predicted points on the sphere
        :param rotation: A (B X CP X 3 X 3) camera rotation tensor
        :param translation: A (B X CP X 3) camera translation tensor
        :return: A tuple(xy, z, uv, uv_3d)
            - xy - (B X CP X 2 X H X W) x,y values of the 3D points after projecting onto image plane
            - z - (B X CP X 1 X H X W) z value of the projection
            - uv - (B X 2 X H X W) UV values of the sphere coordinates
            - uv_3d - (B X H X W X 3) tensor with the 3D coordinates on the mesh
                template for the given sphere coordinates
        """

        uv = convert_3d_to_uv_coordinates(sphere_points.permute(0, 2, 3, 1))
        batch_size = uv.size(0)
        height = uv.size(1)
        width = uv.size(2)
        num_poses = rotation.size(1)

        uv_flatten = uv.view(-1, 2)
        uv_3d = self.uv_to_3d(uv_flatten).view(batch_size, 1, -1, 3)
        uv_3d = uv_3d.repeat(1, num_poses, 1, 1).view(batch_size*num_poses, -1, 3)

        cameras = OpenGLOrthographicCameras(device=sphere_points.device, R=rotation.view(-1, 3, 3), T=translation.view(-1, 3))
        xyz_cam = cameras.get_world_to_view_transform().transform_points(uv_3d)
        z = xyz_cam[:, :, 2:].view(batch_size, num_poses, height, width, 1)
        xy = cameras.transform_points(uv_3d)[:, :, :2].view(batch_size, num_poses, height, width, 2)

        xy = xy.permute(0, 1, 4, 2, 3).flip(2)
        z = z.permute(0, 1, 4, 2, 3)
        uv = uv.permute(0, 3, 1, 2)
        uv_3d = uv_3d.view(batch_size, num_poses, height, width, 3)[:, 0, :, :, :].squeeze()

        return xy, z, uv, uv_3d
예제 #5
0
    def __init__(self, meshes, image_size=256, device='cuda'):

        super(ColorRenderer, self).__init__()

        self.meshes = meshes
        cameras = OpenGLOrthographicCameras(device=device)

        raster_settings = RasterizationSettings(image_size=image_size,
                                                blur_radius=0.0,
                                                faces_per_pixel=1,
                                                bin_size=0)
        lights = PointLights(device=device, location=((2.0, 2.0, -2.0), ))
        self.renderer = MeshRenderer(
            rasterizer=MeshRasterizer(cameras=cameras,
                                      raster_settings=raster_settings),
            shader=TexturedSoftPhongShader(device=device, lights=lights))
예제 #6
0
    def __init__(self, meshes: Meshes, image_size=256):
        """
        Initialization of the Renderer Class. Instances of the mask and depth renderer are create on corresponding
        device.

        :param device: The device, on which the computation is done.
        :param image_size: Image size for the rasterization. Default is 256.
        """
        super().__init__()
        self.meshes = meshes
        device = meshes.device

        # TODO: check how to implement weak perspective (scaled orthographic).
        cameras = OpenGLOrthographicCameras(device=device)

        self._rasterizer = MeshRasterizer(
            cameras=cameras,
            raster_settings=RasterizationSettings(image_size=image_size,
                                                  faces_per_pixel=100))

        self._shader = SoftSilhouetteShader(
            blend_params=(BlendParams(sigma=1e-4, gamma=1e-4)))
예제 #7
0
    def __init__(self, meshes: Meshes, device: str, image_size: int = 256):
        """
           Initialization of DepthRenderer. Initialization of the default mesh rasterizer and silhouette shader which is
           used because of simplicity.

           :param device: The device, on which the computation is done, e.g. cpu or cuda.
           :param image_size: Image size for the rasterization. Default is 256.
           :param meshes: A batch of meshes. pytorch3d.structures.Meshes. Dimension meshes in R^N.
                View https://github.com/facebookresearch/pytorch3d/blob/master/pytorch3d/structures/meshes.py
                for additional information.
       """
        super(DepthRenderer, self).__init__()
        self._meshes = meshes

        # TODO: check how to implement weak perspective (scaled orthographic).
        cameras = OpenGLOrthographicCameras(device=device)

        raster_settings = RasterizationSettings(image_size=image_size)
        self._rasterizer = MeshRasterizer(cameras=cameras,
                                          raster_settings=raster_settings)

        self._shader = SoftSilhouetteShader(
            blend_params=(BlendParams(sigma=1e-4, gamma=1e-4)))
예제 #8
0
    def __init__(self, cfgs):
        super(Renderer, self).__init__()

        self.device = cfgs.get('device', 'cuda:0')
        self.image_size = cfgs.get('image_size', 64)
        self.min_depth = cfgs.get('min_depth', 0.9)
        self.max_depth = cfgs.get('max_depth', 1.1)
        self.rot_center_depth = cfgs.get('rot_center_depth',
                                         (self.min_depth + self.max_depth) / 2)
        # todo: FoV (Field of View) was set to be an fixed value of 10 degree (according to the paper).
        self.fov = cfgs.get('fov', 10)
        self.tex_cube_size = cfgs.get('tex_cube_size', 2)
        self.renderer_min_depth = cfgs.get('renderer_min_depth', 0.1)
        self.renderer_max_depth = cfgs.get('renderer_max_depth', 10.)

        #### camera intrinsics
        #             (u)   (x)
        #    d * K^-1 (v) = (y)
        #             (1)   (z)

        ## renderer for visualization
        R = [[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]]
        R = torch.FloatTensor(R).to(self.device)
        t = torch.zeros(1, 3, dtype=torch.float32).to(self.device)

        ## todo: K is the camera intrinsic matrix.
        fx = (self.image_size - 1) / 2 / (math.tan(
            self.fov / 2 * math.pi / 180))
        fy = (self.image_size - 1) / 2 / (math.tan(
            self.fov / 2 * math.pi / 180))
        cx = (self.image_size - 1) / 2
        cy = (self.image_size - 1) / 2
        K = [[fx, 0., cx], [0., fy, cy], [0., 0., 1.]]
        K = torch.FloatTensor(K).to(self.device)
        self.inv_K = torch.inverse(K).unsqueeze(0)
        self.K = K.unsqueeze(0)

        ## todo: define Renderer.
        ## use renderer from pytorch3d.
        # fixme: znear and zfar is equivalent to the neural renderer default settings.
        cameras = OpenGLOrthographicCameras(device=self.device,
                                            R=R,
                                            T=t,
                                            znear=0.01,
                                            zfar=100)
        # cameras = OpenGLPerspectiveCameras(device=self.device, R=R, T=t,
        #                                   znear=self.renderer_min_depth,
        #                                   zfar=self.renderer_max_depth,
        #                                   fov=self.fov)

        raster_settings = PointsRasterizationSettings(
            image_size=self.image_size,
            radius=0.003,
            points_per_pixel=10,
            bin_size=None,
            max_points_per_bin=None)

        self.renderer = PointsRenderer(
            rasterizer=PointsRasterizer(cameras=cameras,
                                        raster_settings=raster_settings),
            compositor=AlphaCompositor(composite_params=None))
예제 #9
0
                                          'car_mean_shape.mat'),
                                 device=device)
    uv_to_3d = UVto3D(mean_shape, device)
    key_point_colors = np.random.uniform(0, 1, (len(dataset.kp_names), 3))

    for i, data in enumerate(data_loader):

        img = data['img'].to(device, dtype=torch.float)
        scale = data['scale'].to(device, dtype=torch.float)
        trans = data['trans'].to(device, dtype=torch.float)
        quat = data['quat'].to(device, dtype=torch.float)

        rotation, translation = get_scaled_orthographic_projection(
            scale, trans, quat, True)
        camera = OpenGLOrthographicCameras(device=device,
                                           R=rotation,
                                           T=translation)

        kps = (((data['kp'].to(device, dtype=torch.float) + 1) / 2) * 255).to(
            torch.int32)
        kp = draw_key_points(img, kps, key_point_colors)
        fig = plt.figure()
        plt.subplot(2, 2, 1)
        plt.imshow(kp[0].permute(1, 2, 0).cpu())

        # Plot the key points directly using the 3D keypoints and projecting them onto image plane
        kp_3d = torch.from_numpy(dataset.kp_3d).to(
            device, dtype=torch.float32).unsqueeze(0)
        xyz = camera.transform_points(kp_3d)
        xy = (((xyz[:, :, :2] + 1) / 2) * 255).to(torch.int32)
        kp_xy = torch.cat((xy, kps[:, :, 2:]), dim=2)