def test_dm_transfer_batch_to_device(tmpdir): class CustomBatch: def __init__(self, data): self.samples = data[0] self.targets = data[1] class CurrentTestDM(LightningDataModule): hook_called = False def transfer_batch_to_device(self, data, device): self.hook_called = True if isinstance(data, CustomBatch): data.samples = data.samples.to(device) data.targets = data.targets.to(device) else: data = super().transfer_batch_to_device(data, device) return data model = EvalModelTemplate() dm = CurrentTestDM() batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long))) trainer = Trainer(gpus=1) # running .fit() would require us to implement custom data loaders, we mock the model reference instead trainer.get_model = MagicMock(return_value=model) if is_overridden('transfer_batch_to_device', dm): model.transfer_batch_to_device = dm.transfer_batch_to_device trainer.accelerator_backend = GPUAccelerator(trainer) batch_gpu = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) expected = torch.device('cuda', 0) assert dm.hook_called assert batch_gpu.samples.device == batch_gpu.targets.device == expected
def test_non_blocking(): """ Tests that non_blocking=True only gets passed on torch.Tensor.to, but not on other objects. """ trainer = Trainer() trainer.accelerator_backend = GPUAccelerator(trainer) batch = torch.zeros(2, 3) with patch.object(batch, 'to', wraps=batch.to) as mocked: batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) mocked.assert_called_with(torch.device('cuda', 0), non_blocking=True) class BatchObject(object): def to(self, *args, **kwargs): pass batch = BatchObject() with patch.object(batch, 'to', wraps=batch.to) as mocked: batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) mocked.assert_called_with(torch.device('cuda', 0))
def test_single_gpu_batch_parse(): trainer = Trainer(gpus=1) trainer.accelerator_backend = GPUAccelerator(trainer) # non-transferrable types primitive_objects = [ None, {}, [], 1.0, "x", [None, 2], { "x": (1, 2), "y": None } ] for batch in primitive_objects: data = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert data == batch # batch is just a tensor batch = torch.rand(2, 3) batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch.device.index == 0 and batch.type() == 'torch.cuda.FloatTensor' # tensor list batch = [torch.rand(2, 3), torch.rand(2, 3)] batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch[0].device.index == 0 and batch[0].type( ) == 'torch.cuda.FloatTensor' assert batch[1].device.index == 0 and batch[1].type( ) == 'torch.cuda.FloatTensor' # tensor list of lists batch = [[torch.rand(2, 3), torch.rand(2, 3)]] batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch[0][0].device.index == 0 and batch[0][0].type( ) == 'torch.cuda.FloatTensor' assert batch[0][1].device.index == 0 and batch[0][1].type( ) == 'torch.cuda.FloatTensor' # tensor dict batch = [{'a': torch.rand(2, 3), 'b': torch.rand(2, 3)}] batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch[0]['a'].device.index == 0 and batch[0]['a'].type( ) == 'torch.cuda.FloatTensor' assert batch[0]['b'].device.index == 0 and batch[0]['b'].type( ) == 'torch.cuda.FloatTensor' # tuple of tensor list and list of tensor dict batch = ([torch.rand(2, 3) for _ in range(2)], [{ 'a': torch.rand(2, 3), 'b': torch.rand(2, 3) } for _ in range(2)]) batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch[0][0].device.index == 0 and batch[0][0].type( ) == 'torch.cuda.FloatTensor' assert batch[1][0]['a'].device.index == 0 assert batch[1][0]['a'].type() == 'torch.cuda.FloatTensor' assert batch[1][0]['b'].device.index == 0 assert batch[1][0]['b'].type() == 'torch.cuda.FloatTensor' # namedtuple of tensor BatchType = namedtuple('BatchType', ['a', 'b']) batch = [ BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2) ] batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch[0].a.device.index == 0 assert batch[0].a.type() == 'torch.cuda.FloatTensor' # non-Tensor that has `.to()` defined class CustomBatchType: def __init__(self): self.a = torch.rand(2, 2) def to(self, *args, **kwargs): self.a = self.a.to(*args, **kwargs) return self batch = trainer.accelerator_backend.batch_to_device( CustomBatchType(), torch.device('cuda:0')) assert batch.a.type() == 'torch.cuda.FloatTensor' # torchtext.data.Batch samples = [{ 'text': 'PyTorch Lightning is awesome!', 'label': 0 }, { 'text': 'Please make it work with torchtext', 'label': 1 }] text_field = Field() label_field = LabelField() fields = {'text': ('text', text_field), 'label': ('label', label_field)} examples = [Example.fromdict(sample, fields) for sample in samples] dataset = Dataset(examples=examples, fields=fields.values()) # Batch runs field.process() that numericalizes tokens, but it requires to build dictionary first text_field.build_vocab(dataset) label_field.build_vocab(dataset) batch = Batch(data=examples, dataset=dataset) batch = trainer.accelerator_backend.batch_to_device( batch, torch.device('cuda:0')) assert batch.text.type() == 'torch.cuda.LongTensor' assert batch.label.type() == 'torch.cuda.LongTensor'