예제 #1
0
 def __init__(self, trainer):
     self.trainer = trainer
     self.early_stopping_accumulator = None
     self.checkpoint_accumulator = None
     self.accumulated_loss = None
     self._teardown_already_run = False
     self.running_loss = TensorRunningAccum(window_length=20)
예제 #2
0
    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.trainer.current_epoch = epoch

        model = self.trainer.lightning_module

        # reset train dataloader
        if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # todo: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_epoch_start(
            self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # structured result accumulators for callbacks
        self.early_stopping_accumulator = Accumulator()
        self.checkpoint_accumulator = Accumulator()

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")
예제 #3
0
    def on_train_epoch_start(self, epoch):
        model = self.trainer.get_model()

        # set seed for distributed sampler (enables shuffling for each epoch)
        try:
            self.trainer.train_dataloader.sampler.set_epoch(epoch)
        except Exception:
            pass

        # update training progress in trainer and model
        model.current_epoch = epoch
        self.trainer.current_epoch = epoch

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_epoch_start(
            self.trainer, self.trainer.get_model())

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # structured result accumulators for callbacks
        self.early_stopping_accumulator = Accumulator()
        self.checkpoint_accumulator = Accumulator()

        # hook
        self.trainer.call_hook('on_epoch_start')
        self.trainer.call_hook('on_train_epoch_start')
 def __init__(self, trainer):
     self.trainer = trainer
     self.early_stopping_accumulator = None
     self.checkpoint_accumulator = None
     self.accumulated_loss = None
     self.warning_cache = WarningCache()
     self._teardown_already_run = False
     self.running_loss = TensorRunningAccum(window_length=20)
     self.automatic_optimization = True
예제 #5
0
    def __init__(self) -> None:
        super().__init__()
        self.accumulated_loss = TensorRunningAccum(window_length=20)
        self.running_loss = TensorRunningAccum(window_length=20)
        # the current split index when the batch gets split into chunks in truncated backprop through time
        self.split_idx: int = 0
        self.optimizer_loop = OptimizerLoop()
        self.manual_loop = ManualOptimization()

        self._outputs: _OUTPUTS_TYPE = []
        self._remaining_splits: List[Tuple[int, Any]] = []
예제 #6
0
 def __init__(self, trainer, multiple_trainloader_mode: str):
     self.trainer = trainer
     self.accumulated_loss = None
     self.warning_cache = WarningCache()
     self._teardown_already_run = False
     self.running_loss = TensorRunningAccum(window_length=20)
     self._curr_step_result = None
     self._cur_grad_norm_dict = None
     self._multiple_trainloader_mode = multiple_trainloader_mode
     self._skip_backward = False
     self.trainer._multiple_trainloader_mode = multiple_trainloader_mode
예제 #7
0
 def __init__(self, trainer, multiple_trainloader_mode):
     self.trainer = trainer
     self.early_stopping_accumulator = None
     self.checkpoint_accumulator = None
     self.accumulated_loss = None
     self.warning_cache = WarningCache()
     self._teardown_already_run = False
     self.running_loss = TensorRunningAccum(window_length=20)
     self.automatic_optimization = True
     self._curr_step_result = None
     self._cur_grad_norm_dict = None
     self._multiple_trainloader_mode = multiple_trainloader_mode
     self._skip_backward = False
     self.trainer._multiple_trainloader_mode = multiple_trainloader_mode
예제 #8
0
    def on_advance_start(self) -> None:
        """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and
        ``on_train_epoch_start``"""
        model = self.trainer.lightning_module

        # reset train dataloader
        if not self._is_fresh_start_epoch and self.trainer._should_reload_dl_epoch:
            self.trainer.reset_train_dataloader(model)
        self._is_fresh_start_epoch = False

        if self.trainer.train_dataloader is not None and callable(
            getattr(self.trainer.train_dataloader.sampler, "set_epoch", None)
        ):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches
        )

        self.epoch_progress.increment_ready()
예제 #9
0
    def __init__(
        self,
        trainer,
        max_epochs: Optional[int],
        min_epochs: Optional[int],
        max_steps: Optional[int],
        min_steps: Optional[int],
        num_sanity_val_steps: int,
    ):
        self.trainer = trainer
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self._skip_backward = False
        self._optimizer_freq_cumsum = None
        self._hiddens = None

        self.global_step = 0
        self.current_epoch = 0
        self.trainer.should_stop = False

        # the total batch index across all epochs
        self.total_batch_idx = 0
        # the current batch index in the loop that runs over the dataloader(s)
        self.batch_idx = 0
        # the current split index when the batch gets split into chunks in truncated backprop through time
        self.split_idx = None

        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.max_epochs = 1000 if (max_epochs is None
                                   and max_steps is None) else max_epochs
        # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
        self.min_epochs = 1 if (min_epochs is None
                                and min_steps is None) else min_epochs
        self.max_steps = max_steps
        self.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps
예제 #10
0
    def __init__(
        self,
        trainer,
        multiple_trainloader_mode: str,
        max_epochs: Optional[int],
        min_epochs: Optional[int],
        max_steps: Optional[int],
        min_steps: Optional[int],
        num_sanity_val_steps: int,
    ):
        self.trainer = trainer
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self._curr_step_result = None
        self._cur_grad_norm_dict = None
        self._multiple_trainloader_mode = multiple_trainloader_mode
        self._skip_backward = False
        self.trainer._multiple_trainloader_mode = multiple_trainloader_mode
        self._optimizer_freq_cumsum = None

        self.global_step = 0
        self.current_epoch = 0
        self.trainer.should_stop = False

        self.total_batch_idx = 0
        self.batch_idx = 0
        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.max_epochs = 1000 if (max_epochs is None
                                   and max_steps is None) else max_epochs
        # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
        self.min_epochs = 1 if (min_epochs is None
                                and min_steps is None) else min_epochs
        self.max_steps = max_steps
        self.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps
예제 #11
0
def test_tensor_running_accum_reset():
    """ Test that reset would set all attributes to the initialization state """

    window_length = 10

    accum = TensorRunningAccum(window_length=window_length)
    assert accum.last() is None
    assert accum.mean() is None

    accum.append(torch.tensor(1.5))
    assert accum.last() == torch.tensor(1.5)
    assert accum.mean() == torch.tensor(1.5)

    accum.reset()
    assert accum.window_length == window_length
    assert accum.memory is None
    assert accum.current_idx == 0
    assert accum.last_idx is None
    assert not accum.rotated
예제 #12
0
 def _update_running_loss(self, outputs: Mapping[str,
                                                 torch.Tensor]) -> None:
     for k, v in outputs.items():
         if "weighted_loss" in k:
             continue
         if "loss" not in k:
             continue
         self._running_loss.setdefault(k,
                                       TensorRunningAccum(window_length=20))
         self._running_loss[k].append(v.mean())
예제 #13
0
    def __init__(self) -> None:
        super().__init__()
        self.accumulated_loss: Optional[Tensor] = None
        self.batch_outputs: Optional[List[List[STEP_OUTPUT]]] = None
        self.running_loss: TensorRunningAccum = TensorRunningAccum(window_length=20)
        self.batch_idx: int = 0
        self.split_idx: Optional[int] = None
        self.warning_cache: WarningCache = WarningCache()

        self._hiddens: Optional[Tensor] = None
        self._optimizer_freq_cumsum: Optional[int] = None
        self._remaining_splits: Optional[List[Any]] = None
        self._skip_backward: bool = False
    def __init__(self) -> None:
        super().__init__()
        self.accumulated_loss: Optional[Tensor] = None
        self.batch_outputs: Optional[List[List[STEP_OUTPUT]]] = None
        self.running_loss: TensorRunningAccum = TensorRunningAccum(
            window_length=20)
        # the current split index when the batch gets split into chunks in truncated backprop through time
        self.split_idx: Optional[int] = None
        self.optimizer_loop = OptimizerLoop()

        self._warning_cache: WarningCache = WarningCache()
        self._hiddens: Optional[Tensor] = None
        self._optimizer_freq_cumsum: Optional[int] = None
        self._remaining_splits: Optional[List[Any]] = None
예제 #15
0
    def on_advance_start(self) -> None:
        """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and ``on_train_epoch_start``"""
        model = self.trainer.lightning_module

        # reset train dataloader
        if self.current_epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # TODO: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches
        )
예제 #16
0
    def train(self):
        self.run_sanity_check(self.get_model())

        # TODO: shrink
        # clear cache before training
        if self.on_gpu and self.root_gpu is not None:
            # use context because of:
            # https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
            with torch.cuda.device(f'cuda:{self.root_gpu}'):
                torch.cuda.empty_cache()

        # get model
        model = self.get_model()

        # enable train mode
        model.train()

        # enable gradients
        torch.set_grad_enabled(True)

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)

        if self.val_dataloaders is None and not self.reload_dataloaders_every_epoch:
            self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod or self.on_tpu) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches
                )

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps <= self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                if self.should_stop:
                    if (met_min_epochs and met_min_steps):
                        self.run_training_teardown()
                        return
                    else:
                        log.info('Trainer was signaled to stop but required minimum epochs'
                                 f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
                                 ' not been met. Training will continue...')

            self.run_training_teardown()

        except KeyboardInterrupt:
            rank_zero_warn('Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True
                self._state = TrainerState.INTERRUPTED
                self.on_keyboard_interrupt()

                self.run_training_teardown()
예제 #17
0
class TrainLoop:
    def __init__(self, trainer, multiple_trainloader_mode):
        self.trainer = trainer
        self.early_stopping_accumulator = None
        self.checkpoint_accumulator = None
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self.automatic_optimization = True
        self._curr_step_result = None
        self._cur_grad_norm_dict = None
        self._multiple_trainloader_mode = multiple_trainloader_mode
        self._skip_backward = False
        self.trainer._multiple_trainloader_mode = multiple_trainloader_mode

    def on_trainer_init(
        self,
        max_epochs,
        min_epochs,
        max_steps,
        min_steps,
        num_sanity_val_steps,
        weights_summary,
    ):
        self.trainer.global_step = 0
        self.trainer.current_epoch = 0
        self.trainer.should_stop = False
        self.trainer._state = TrainerState.INITIALIZING

        self.trainer.total_batch_idx = 0
        self.trainer.batch_idx = 0
        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.trainer.max_epochs = 1000 if (
            max_epochs is None and max_steps is None) else max_epochs
        # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
        self.trainer.min_epochs = 1 if (min_epochs is None
                                        and min_steps is None) else min_epochs
        self.trainer.max_steps = max_steps
        self.trainer.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

        self.trainer.weights_summary = weights_summary
        if weights_summary is not None and weights_summary not in ModelSummary.MODES:
            raise MisconfigurationException(
                f"`weights_summary` can be None, {', '.join(ModelSummary.MODES)}, got {weights_summary}"
            )

    @property
    def num_optimizers(self):
        num_optimizers = len(self.get_optimizers_iterable())
        return num_optimizers

    def should_skip_training(self):
        should_by_max_steps = self.trainer.max_steps is not None and self.trainer.global_step >= self.trainer.max_steps
        should_by_epoch = self.trainer.max_epochs is not None and self.trainer.current_epoch >= self.trainer.max_epochs
        return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0

    def on_train_start(self):
        # hook
        self.trainer.call_hook("on_train_start")

    def setup_fit(self,
                  model,
                  train_dataloader=None,
                  val_dataloaders=None,
                  datamodule=None):
        # clean hparams
        if hasattr(model, "hparams"):
            parsing.clean_namespace(model.hparams)

        # links data to the trainer
        self.trainer.data_connector.attach_data(model, train_dataloader,
                                                val_dataloaders, datamodule)

        # check that model is configured correctly
        self.trainer.config_validator.verify_loop_configurations(model)

        # attach model log function to callback
        self.trainer.callback_connector.attach_model_logging_functions(model)

    def on_train_end(self):
        if self._teardown_already_run:
            return
        self._teardown_already_run = True

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.trainer.global_step -= 1
        self.check_checkpoint_callback(should_update=True, is_last=True)
        self.trainer.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
        # It might be related to xla tensors blocked when moving the cpu
        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator.on_train_end()

        # reset bookkeeping
        self.trainer._running_stage = None

    def check_checkpoint_callback(self, should_update, is_last=False):
        # TODO bake this logic into the ModelCheckpoint callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = self.trainer.checkpoint_callbacks

            if is_last and any(cb.save_last and cb.verbose
                               for cb in callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def check_early_stopping_callback(self, should_update):
        # TODO bake this logic into the EarlyStopping callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = [
                c for c in self.trainer.callbacks
                if isinstance(c, EarlyStopping)
            ]
            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.trainer.current_epoch = epoch

        model = self.trainer.lightning_module

        # reset train dataloader
        if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # todo: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_epoch_start(
            self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # structured result accumulators for callbacks
        self.early_stopping_accumulator = Accumulator()
        self.checkpoint_accumulator = Accumulator()

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")

    def on_train_batch_end(self, epoch_output, batch_end_outputs, batch,
                           batch_idx, dataloader_idx):
        # hook
        self.trainer.call_hook('on_train_batch_end', batch_end_outputs, batch,
                               batch_idx, dataloader_idx)
        self.trainer.call_hook('on_batch_end')

        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)

        # reset batch logger internals
        self.trainer.logger_connector.on_train_batch_end()

    def reset_train_val_dataloaders(self, model):
        if self.trainer.train_dataloader is None or not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):

        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(batch_end_outputs):
            sample_output = opt_outputs[-1]

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(
                sample_output,
                Result) and sample_output.should_reduce_on_epoch_end
            hook_overridden = (is_overridden(
                "training_epoch_end", model=self.trainer.lightning_module)
                               or is_overridden(
                                   "on_train_epoch_end",
                                   model=self.trainer.lightning_module))

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if not (hook_overridden or auto_reduce_tng_result):
                continue

            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs,
                          list) and len(opt_outputs) == 1 and not isinstance(
                              opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]

            epoch_output[opt_idx].append(opt_outputs)

    def get_optimizers_iterable(self):
        """
        Generates an iterable with (idx, optimizer) for each optimizer.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [[opt_idx, self.trainer.optimizers[opt_idx]]]

    def on_after_backward(self, training_step_output, batch_idx,
                          untouched_loss):
        is_result_obj = isinstance(training_step_output, Result)

        if is_result_obj:
            training_step_output = training_step_output.detach()
        else:
            training_step_output.batch_loss = training_step_output.batch_loss.detach(
            )

        # insert after step hook
        self.trainer.call_hook("on_after_backward")

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(
            batch_idx, untouched_loss.detach())

    def _check_training_step_output(self, training_step_output):
        if isinstance(training_step_output,
                      torch.Tensor) and not self.automatic_optimization:
            if training_step_output.grad_fn is None:
                # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
                raise MisconfigurationException(
                    "In manual optimization, `training_step` should not return a Tensor"
                )

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        # give the PL module a result for logging
        model_ref = self.trainer.lightning_module

        with self.trainer.profiler.profile("model_forward"):
            args = self.build_train_args(split_batch, batch_idx, opt_idx,
                                         hiddens)

            # manually capture logged metrics
            model_ref._current_fx_name = 'training_step'
            model_ref._results = Result()
            with self.trainer.profiler.profile("training_step"):
                training_step_output = self.trainer.accelerator.training_step(
                    args)
                self.trainer.accelerator.post_training_step()

            self.trainer.logger_connector.cache_logged_metrics()

            self._check_training_step_output(training_step_output)

            training_step_output = self.trainer.call_hook(
                "training_step_end", training_step_output)

            training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
                training_step_output, split_batch)
            is_result_obj = isinstance(training_step_output, Result)

            if training_step_output_for_epoch_end is None:
                return None

        # enable empty loss when using manual opt
        closure_loss = None
        untouched_loss = None

        if self.automatic_optimization:
            # accumulate loss
            # (if accumulate_grad_batches = 1 no effect)
            if is_result_obj:
                closure_loss = training_step_output.minimize
            else:
                closure_loss = training_step_output.batch_loss

            closure_loss = closure_loss / self.trainer.accumulate_grad_batches

            # the loss will get scaled for amp. avoid any modifications to it
            untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
            hiddens=training_step_output.hiddens,
        )
        return result

    def _process_training_step_output(self, training_step_output, split_batch):
        training_step_output_for_epoch_end = training_step_output

        # enable validation_step return None
        if training_step_output_for_epoch_end is None:
            return None, None

        # -----------------------------------------
        # process hybrid (1.0)
        # -----------------------------------------
        # no need for these checks in 1.0.0
        # TODO: remove checks in 1.0.0
        is_tensor = isinstance(training_step_output_for_epoch_end,
                               torch.Tensor)
        is_1_0_output = is_tensor or ("log" not in training_step_output
                                      and "progress_bar"
                                      not in training_step_output)
        if is_1_0_output:
            return self._process_training_step_output_1_0(
                training_step_output, split_batch)

        # -----------------------------------------
        # process old dict (deprecate 1.0)
        # -----------------------------------------
        training_step_output = self.trainer.process_dict_result(
            training_step_output, train=True)

        training_step_output = AttributeDict(
            batch_loss=training_step_output[0],
            pbar_on_batch_end=training_step_output[1],
            log_metrics=training_step_output[2],
            callback_metrics=training_step_output[3],
            hiddens=training_step_output[4],
        )
        # if the user decides to finally reduce things in epoch_end, save raw output without graphs
        if isinstance(training_step_output_for_epoch_end, torch.Tensor):
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
            )
        else:
            training_step_output_for_epoch_end = recursive_detach(
                training_step_output_for_epoch_end)

        return training_step_output_for_epoch_end, training_step_output

    def _process_training_step_output_1_0(self, training_step_output,
                                          split_batch):
        result = self.trainer.lightning_module._results

        loss = None
        hiddens = None

        # handle dict return
        if isinstance(training_step_output, dict):
            loss = training_step_output.pop("loss", None)
            hiddens = training_step_output.pop("hiddens", None)
            result["extra"] = training_step_output

        # handle scalar return
        elif isinstance(training_step_output, torch.Tensor):
            loss = training_step_output
            result["extra"] = {}

        # map to results under the hood
        result.minimize = loss
        result.hiddens = hiddens

        # track batch for manual reduction with result
        result.track_batch_size(len(split_batch))

        # track metrics without grads for epoch reduction
        training_step_output_for_epoch_end = copy(result)
        training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
        )
        if self.trainer.move_metrics_to_cpu:
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu(
            )

        # what flows back into the system
        training_step_output = result

        return training_step_output_for_epoch_end, training_step_output

    def optimizer_step(self, optimizer, opt_idx, batch_idx,
                       train_step_and_backward_closure):
        model_ref = self.trainer.lightning_module

        is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
        using_native_amp = self.trainer.amp_backend == AMPType.NATIVE

        # native amp + lbfgs is a no go right now
        if using_native_amp and is_lbfgs:
            raise MisconfigurationException(
                'native PyTorch amp and lbfgs are not compatible.'
                ' To request, please file a Github issue in PyTorch and tag @mcarilli'
            )

        # wraps into LightningOptimizer only for running step
        optimizer = LightningOptimizer._to_lightning_optimizer(
            optimizer, self.trainer, opt_idx)

        # model hook
        model_ref.optimizer_step(
            self.trainer.current_epoch,
            batch_idx,
            optimizer,
            opt_idx,
            train_step_and_backward_closure,
            on_tpu=self.trainer._device_type == DeviceType.TPU
            and _TPU_AVAILABLE,
            using_native_amp=using_native_amp,
            using_lbfgs=is_lbfgs,
        )

    def on_before_zero_grad(self, optimizer):
        self.trainer.call_hook('on_before_zero_grad', optimizer)

    def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
        self.trainer.accelerator.optimizer_zero_grad(
            self.trainer.current_epoch, batch_idx, optimizer, opt_idx)

    def track_and_norm_grad(self, optimizer):
        # track gradient norms
        grad_norm_dic = self._track_gradient_norm()

        # clip gradients
        self.trainer.accelerator.clip_gradients(optimizer,
                                                self.trainer.gradient_clip_val)
        self._cur_grad_norm_dict = grad_norm_dic

    def _track_gradient_norm(self):
        grad_norm_dict = {}
        if (self.trainer.global_step +
                1) % self.trainer.log_every_n_steps == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.lightning_module
                grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
        return grad_norm_dict

    def process_hiddens(self, opt_closure_result):
        hiddens = opt_closure_result.hiddens
        if isinstance(opt_closure_result.training_step_output, Result):
            opt_closure_result.training_step_output_for_epoch_end.drop_hiddens(
            )
        return hiddens

    def tbptt_split_batch(self, batch):
        splits = [batch]
        if self.trainer.truncated_bptt_steps is not None:
            model_ref = self.trainer.lightning_module
            with self.trainer.profiler.profile("tbptt_split_batch"):
                splits = model_ref.tbptt_split_batch(
                    batch, self.trainer.truncated_bptt_steps)
        return splits

    def run_training_epoch(self):
        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator.process_dataloader(
            self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_optimizers)]

        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(
            train_dataloader)
        dataloader_idx = 0
        val_loop_called = False

        for batch_idx, (batch, is_last_batch) in train_dataloader:

            self.trainer.batch_idx = batch_idx

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.run_training_batch(batch, batch_idx,
                                                       dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            if batch_output.signal == -1:
                break

            batch_end_outputs = self.process_train_step_outputs(
                batch_output.training_step_output_for_epoch_end,
                self.early_stopping_accumulator,
                self.checkpoint_accumulator,
            )
            # hook
            # TODO: add outputs to batches
            self.on_train_batch_end(epoch_output, batch_end_outputs, batch,
                                    batch_idx, dataloader_idx)

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.log_train_step_metrics(batch_output)

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val_fx(
                batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.validating = True
                self.trainer.run_evaluation()
                self.trainer.training = True
                val_loop_called = True

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end()

            # update LR schedulers
            monitor_metrics = deepcopy(
                self.trainer.logger_connector.callback_metrics)
            self.update_train_loop_lr_schedulers(
                monitor_metrics=monitor_metrics)
            self.trainer.checkpoint_connector.has_trained = True

            # max steps reached, end training
            if (self.trainer.max_steps is not None
                    and self.trainer.max_steps == self.trainer.global_step + 1
                    and self._accumulated_batches_reached()):
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.trainer.should_stop:
                break

            self.trainer.total_batch_idx += 1

            # stop epoch if we limited the number of training batches
            if self._num_training_batches_reached(is_last_batch):
                break

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

        # epoch end hook
        self.run_on_epoch_end_hook(epoch_output)

        # log epoch metrics
        self.trainer.logger_connector.log_train_epoch_end_metrics(
            epoch_output, self.checkpoint_accumulator,
            self.early_stopping_accumulator, self.num_optimizers)

        should_check_val = self.should_check_val_fx(batch_idx,
                                                    is_last_batch,
                                                    on_epoch=True)
        should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(
            self.trainer.num_val_batches)
        should_train_only = self.trainer.disable_validation or should_skip_eval

        # update epoch level lr_schedulers if no val loop outside train loop is triggered
        if (val_loop_called and not should_check_val) or should_train_only:
            self.trainer.optimizer_connector.update_learning_rates(
                interval='epoch')

        if should_train_only:
            self.check_checkpoint_callback(True)
            self.check_early_stopping_callback(True)

        if should_check_val:
            self.trainer.validating = True
            self.trainer.run_evaluation(on_epoch=True)
            self.trainer.training = True

        # increment the global step once
        # progress global step according to grads progress
        self.increment_accumulated_grad_global_step()

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dic = {}

        # bookkeeping
        self.trainer.hiddens = None

        # track all outputs across time and num of optimizers
        batch_outputs = [[]
                         for _ in range(len(self.get_optimizers_iterable()))]

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_batch_start")
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_train_batch_start", batch,
                                          batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # lightning module hook
        splits = self.tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):

            # create an iterable for optimizers and loop over them
            for opt_idx, optimizer in self.prepare_optimizers():

                # toggle model params + set info to logger_connector
                self.run_train_split_start(split_idx, split_batch, opt_idx,
                                           optimizer)

                if self.should_accumulate():
                    # For gradient accumulation

                    # -------------------
                    # calculate loss (train step + train step end)
                    # -------------------

                    # automatic_optimization=True: perform dpp sync only when performing optimizer_step
                    # automatic_optimization=False: don't block synchronization here
                    with self.block_ddp_sync_behaviour():
                        self.training_step_and_backward(
                            split_batch, batch_idx, opt_idx, optimizer,
                            self.trainer.hiddens)

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients

                else:
                    if self.automatic_optimization:

                        def train_step_and_backward_closure():
                            result = self.training_step_and_backward(
                                split_batch, batch_idx, opt_idx, optimizer,
                                self.trainer.hiddens)
                            return None if result is None else result.loss

                        # optimizer step
                        self.optimizer_step(optimizer, opt_idx, batch_idx,
                                            train_step_and_backward_closure)

                    else:
                        self._curr_step_result = self.training_step(
                            split_batch, batch_idx, opt_idx,
                            self.trainer.hiddens)

                    if self._curr_step_result is None:
                        # user decided to skip optimization
                        # make sure to zero grad.
                        continue

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                    # todo: Properly aggregate grad_norm accros opt_idx and split_idx
                    grad_norm_dic = self._cur_grad_norm_dict
                    self._cur_grad_norm_dict = None

                    # update running loss + reset accumulated loss
                    self.update_running_loss()

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            training_step_output_for_epoch_end=batch_outputs,
        )
        return result

    @contextmanager
    def block_ddp_sync_behaviour(self, should_block_sync: bool = False):
        """
        automatic_optimization = True
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        automatic_optimization = False
        do not block ddp gradient sync when using manual optimization
        as gradients are needed within the training step

        Returns:
            context manager with sync behaviour off

        """
        if (isinstance(self.trainer.training_type_plugin, ParallelPlugin)
                and (self.automatic_optimization or should_block_sync)):
            with self.trainer.training_type_plugin.block_backward_sync():
                yield None
        else:
            yield None

    def _process_closure_result(self, batch_outputs: list,
                                opt_idx: int) -> list:
        opt_closure_result = self._curr_step_result

        if opt_closure_result is not None:

            # cache metrics
            self.trainer.logger_connector.cache_training_step_metrics(
                opt_closure_result)

            # track hiddens
            self.trainer.hiddens = self.process_hiddens(opt_closure_result)

            # check if loss or model weights are nan
            if self.trainer.terminate_on_nan:
                self.trainer.detect_nan_tensors(opt_closure_result.loss)

            # track all the outputs across all steps
            batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
            batch_outputs[batch_opt_idx].append(
                opt_closure_result.training_step_output_for_epoch_end)

            if self.automatic_optimization:
                # track total loss for logging (avoid mem leaks)
                self.accumulated_loss.append(opt_closure_result.loss)

        self._curr_step_result = None

        return batch_outputs

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx,
                                   optimizer, hiddens):
        """
        wrap the forward step in a closure so second order methods work
        """
        with self.trainer.profiler.profile("training_step_and_backward"):
            # lightning module hook
            result = self.training_step(split_batch, batch_idx, opt_idx,
                                        hiddens)
            self._curr_step_result = result

            if not self._skip_backward and self.automatic_optimization:
                is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0

                if is_first_batch_to_accumulate:
                    self.on_before_zero_grad(optimizer)
                    self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)

                # backward pass
                if result is not None:
                    with self.trainer.profiler.profile("model_backward"):
                        self.backward(result, optimizer, opt_idx)

                    # hook - call this hook only
                    # when gradients have finished to accumulate
                    if not self.should_accumulate():
                        self.on_after_backward(result.training_step_output,
                                               batch_idx, result.loss)

                    # check if loss or model weights are nan
                    if self.trainer.terminate_on_nan:
                        self.trainer.detect_nan_tensors(result.loss)

                else:
                    self.warning_cache.warn(
                        "training_step returned None if it was on purpose, ignore this warning..."
                    )

                if len(self.trainer.optimizers) > 1:
                    # revert back to previous state
                    self.trainer.lightning_module.untoggle_optimizer(opt_idx)

        return result

    def backward(self, result, optimizer, opt_idx, *args, **kwargs):
        self.trainer.dev_debugger.track_event("backward_call")

        should_accumulate = self.should_accumulate()

        # backward can be called manually in the training loop
        if isinstance(result, torch.Tensor):
            self.trainer.accelerator.backward(result, optimizer, opt_idx,
                                              should_accumulate, *args,
                                              **kwargs)
        else:
            result.closure_loss = self.trainer.accelerator.backward(
                result.closure_loss, optimizer, opt_idx, should_accumulate,
                *args, **kwargs)

        if not self.should_accumulate():
            # track gradients
            self.track_and_norm_grad(optimizer=optimizer)

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        if num_accumulated_batches_reached or num_training_batches_reached:
            # update lr
            self.trainer.optimizer_connector.update_learning_rates(
                interval="step", monitor_metrics=monitor_metrics)

    def run_on_epoch_end_hook(self, epoch_output):
        # inform logger the batch loop has finished
        self.trainer.logger_connector.on_train_epoch_end()

        self.trainer.call_hook('on_train_epoch_end', epoch_output)
        self.trainer.call_hook('on_epoch_end')

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.trainer.global_step += 1

    def _accumulated_batches_reached(self):
        return (self.trainer.batch_idx +
                1) % self.trainer.accumulate_grad_batches == 0

    def _num_training_batches_reached(self, is_last_batch=False):
        return (self.trainer.batch_idx +
                1) == self.trainer.num_training_batches or is_last_batch

    def should_accumulate(self):
        # checks if backward or backward + optimizer step (via closure)
        accumulation_done = self._accumulated_batches_reached()
        is_final_batch = self._num_training_batches_reached()
        return not (accumulation_done or is_final_batch)

    def should_check_val_fx(self, batch_idx, is_last_batch, on_epoch=False):
        # decide if we should run validation
        is_val_check_batch = (batch_idx +
                              1) % self.trainer.val_check_batch == 0
        is_val_check_epoch = (self.trainer.current_epoch +
                              1) % self.trainer.check_val_every_n_epoch == 0
        can_check_val = self.trainer.enable_validation and is_val_check_epoch
        is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float(
            "inf")
        epoch_end_val_check = (batch_idx +
                               1) % self.trainer.num_training_batches == 0

        should_check_val = (
            (is_val_check_batch and epoch_end_val_check)
            or self.trainer.should_stop or is_last_batch_for_infinite_dataset
        ) if on_epoch else (is_val_check_batch and not epoch_end_val_check)

        return should_check_val and can_check_val

    def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.trainer.optimizers) > 1:
            if self.trainer.has_arg("training_step", "optimizer_idx"):
                if not self.automatic_optimization:
                    self.warning_cache.warn(
                        "`training_step` hook signature has changed in v1.3."
                        " `optimizer_idx` argument has been removed in case of manual optimization. Support for"
                        " the old signature will be removed in v1.5",
                        DeprecationWarning)
                args.append(opt_idx)
            elif not self.trainer.has_arg(
                    "training_step",
                    "optimizer_idx") and self.automatic_optimization:
                raise ValueError(
                    f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but"
                    ' `training_step` is missing the `optimizer_idx` argument.'
                )

        # pass hiddens if using tbptt
        if self.trainer.truncated_bptt_steps is not None:
            args.append(hiddens)

        return args

    def save_loggers_on_train_batch_end(self):
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
            self.trainer.logger.save()

    def process_train_step_outputs(self, all_train_step_outputs,
                                   early_stopping_accumulator,
                                   checkpoint_accumulator):
        """
        Figure out what needs to be tracked/logged at the end of the epoch
        """

        # the training step outputs a list per optimizer. The list contains the outputs at each time step
        # when no TBPTT is used, then the list has 1 item per batch
        # when TBPTT IS used, then the list has n items (1 per time step)
        batch_end_outputs = []
        for optimizer_idx_outputs in all_train_step_outputs:
            # extract one representative sample from each time step (1 if no tbptt) and 0th optimizer
            if len(optimizer_idx_outputs) == 0:
                continue

            sample_output = optimizer_idx_outputs[-1]

            # pull out callback info if available (ie: Results object)
            if isinstance(sample_output,
                          dict) and "early_stop_on" in sample_output:
                early_stopping_accumulator.accumulate(
                    sample_output["early_stop_on"])

            if isinstance(sample_output,
                          dict) and "checkpoint_on" in sample_output:
                checkpoint_accumulator.accumulate(
                    sample_output["checkpoint_on"])

            batch_end_outputs.append(optimizer_idx_outputs)

        return batch_end_outputs

    def prepare_optimizers(self):
        # in manual optimization we loop over all optimizers at once
        optimizers = self.get_optimizers_iterable()
        if not self.automatic_optimization:
            optimizers = [optimizers[0]]
        return optimizers

    def run_train_split_start(self, split_idx, split_batch, opt_idx,
                              optimizer):
        # set split_idx to trainer for tracking
        self.trainer.split_idx = split_idx

        # make sure only the gradients of the current optimizer's parameters are calculated
        # in the training step to prevent dangling gradients in multiple-optimizer setup.
        if self.automatic_optimization and len(self.trainer.optimizers) > 1:
            model = self.trainer.lightning_module
            model.toggle_optimizer(optimizer, opt_idx)

        # use to track metrics internally
        self.trainer.logger_connector.on_train_split_start(
            split_idx, opt_idx, split_batch)

    def update_running_loss(self):
        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() *
                                     self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
예제 #18
0
class TrainLoop:
    def __init__(self, trainer):
        self.trainer = trainer
        self.should_check_val = False
        self.early_stopping_accumulator = None
        self.checkpoint_accumulator = None
        self.accumulated_loss = None
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)

    def on_trainer_init(self, max_epochs, min_epochs, max_steps, min_steps,
                        num_sanity_val_steps):
        self.trainer.global_step = 0
        self.trainer.current_epoch = 0
        self.trainer.interrupted = False
        self.trainer.should_stop = False
        self.trainer._state = TrainerState.INITIALIZING

        self.trainer.total_batch_idx = 0
        self.trainer.batch_idx = 0
        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        self.trainer.max_epochs = max_epochs
        self.trainer.min_epochs = min_epochs
        self.trainer.max_steps = max_steps
        self.trainer.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float('inf')
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

    @property
    def num_optimizers(self):
        num_optimizers = len(self.get_optimizers_iterable())
        return num_optimizers

    def on_train_start(self):
        # clear cache before training
        if self.trainer.on_gpu and self.trainer.root_gpu is not None:
            # use context because of:
            # https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
            with torch.cuda.device(f'cuda:{self.trainer.root_gpu}'):
                torch.cuda.empty_cache()

        # hook
        self.trainer.call_hook('on_train_start')

    def setup_fit(self, model, train_dataloader, val_dataloaders, datamodule):
        # bind logger and other properties
        self.trainer.model_connector.copy_trainer_model_properties(model)

        # clean hparams
        if hasattr(model, 'hparams'):
            parsing.clean_namespace(model.hparams)

        # links data to the trainer
        self.trainer.data_connector.attach_data(model, train_dataloader,
                                                val_dataloaders, datamodule)

        # check that model is configured correctly
        self.trainer.config_validator.verify_loop_configurations(model)

    def setup_training(self, model: LightningModule):
        """Sanity check a few things before starting actual training.

        Args:
            model: The model to run sanity test on.
        """
        # --------------------------
        # Setup??
        # --------------------------
        ref_model = model
        if self.trainer.data_parallel:
            ref_model = model.module

        # give model convenience properties
        ref_model.trainer = self.trainer

        # set local properties on the model
        self.trainer.model_connector.copy_trainer_model_properties(ref_model)

        # init amp. Must be done here instead of __init__ to allow ddp to work
        if self.trainer.amp_backend == AMPType.NATIVE and self.trainer.precision == 16 and not self.trainer.use_tpu:
            self.trainer.scaler = torch.cuda.amp.GradScaler()

        # log hyper-parameters
        if self.trainer.logger is not None:
            # save exp to get started
            self.trainer.logger.log_hyperparams(ref_model.hparams)
            self.trainer.logger.log_graph(ref_model)
            self.trainer.logger.save()

        # wait for all to join if on distributed
        self.trainer.accelerator_backend.barrier('setup_training')

        # register auto-resubmit when on SLURM
        self.trainer.slurm_connector.register_slurm_signal_handlers()

        # --------------------------
        # Pre-train
        # --------------------------
        # on pretrain routine start
        self.trainer.on_pretrain_routine_start(ref_model)
        if self.trainer.is_function_implemented('on_pretrain_routine_start'):
            ref_model.on_pretrain_routine_start()

        # print model summary
        if self.trainer.is_global_zero and self.trainer.weights_summary is not None and not self.trainer.testing:
            if self.trainer.weights_summary in ModelSummary.MODES:
                ref_model.summarize(mode=self.trainer.weights_summary)
            else:
                raise MisconfigurationException(
                    "weights_summary can be None, " +
                    ", ".join(ModelSummary.MODES))

        # track model now.
        # if cluster resets state, the model will update with the saved weights
        self.trainer.model = model

        # restore training and model before hpc is called
        self.trainer.checkpoint_connector.restore_weights(model)

        # on pretrain routine end
        self.trainer.on_pretrain_routine_end(ref_model)
        if self.trainer.is_function_implemented('on_pretrain_routine_end'):
            ref_model.on_pretrain_routine_end()

    def on_train_end(self):
        if self._teardown_already_run:
            return

        self._teardown_already_run = True

        # Save latest checkpoint
        rank_zero_warn('Saving latest checkpoint..')
        self.check_checkpoint_callback(should_check_val=False, force_save=True)

        # hook
        self.trainer.call_hook('on_train_end')

        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        if self.trainer.global_rank == 0:
            self.trainer.profiler.describe()

        if self.trainer.global_rank == 0:
            for proc in self.trainer.interactive_ddp_procs:
                subprocess.Popen.kill(proc)

        # clean up dist group
        if self.trainer.use_ddp or self.trainer.use_ddp2:
            torch_distrib.destroy_process_group()

        # clear mem
        if self.trainer.on_gpu:
            model = self.trainer.get_model()
            model.cpu()
            torch.cuda.empty_cache()

    def check_checkpoint_callback(self, should_check_val, force_save=False):
        model = self.trainer.get_model()

        # when no val loop is present or fast-dev-run still need to call checkpoints
        # TODO bake this logic into the checkpoint callback
        should_activate = not is_overridden('validation_step',
                                            model) and not should_check_val
        if should_activate or force_save:
            checkpoint_callbacks = [
                c for c in self.trainer.callbacks
                if isinstance(c, ModelCheckpoint)
            ]
            [
                c.on_validation_end(self.trainer, model)
                for c in checkpoint_callbacks
            ]

    def on_train_epoch_start(self, epoch):
        model = self.trainer.get_model()

        # set seed for distributed sampler (enables shuffling for each epoch)
        try:
            self.trainer.train_dataloader.sampler.set_epoch(epoch)
        except Exception:
            pass

        # update training progress in trainer and model
        model.current_epoch = epoch
        self.trainer.current_epoch = epoch

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_epoch_start(
            self.trainer, self.trainer.get_model())

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # bookkeeping
        self.should_check_val = False

        # structured result accumulators for callbacks
        self.early_stopping_accumulator = Accumulator()
        self.checkpoint_accumulator = Accumulator()

        # hook
        self.trainer.call_hook('on_epoch_start')
        self.trainer.call_hook('on_train_epoch_start')

    def on_train_batch_end(self, epoch_output, epoch_end_outputs, batch,
                           batch_idx, dataloader_idx):
        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, epoch_end_outputs)

        # hook
        self.trainer.call_hook('on_batch_end')
        self.trainer.call_hook('on_train_batch_end', batch, batch_idx,
                               dataloader_idx)

    def reset_train_val_dataloaders(self, model):
        if not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, epoch_end_outputs):
        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(epoch_end_outputs):
            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs,
                          list) and len(opt_outputs) == 1 and not isinstance(
                              opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]
            epoch_output[opt_idx].append(opt_outputs)

    def get_optimizers_iterable(self):
        """
        Generates an iterable with (idx, optimizer) for each optimizer.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [(opt_idx, self.trainer.optimizers[opt_idx])]

    def backward(self, result, optimizer, opt_idx):
        # backward pass
        with self.trainer.profiler.profile('model_backward'):
            result.closure_loss = self.trainer.accelerator_backend.backward(
                result.closure_loss, optimizer, opt_idx)

    def on_after_backward(self, training_step_output, batch_idx,
                          untouched_loss):
        is_result_obj = isinstance(training_step_output, Result)

        if is_result_obj:
            training_step_output.detach()
        else:
            training_step_output.batch_loss = training_step_output.batch_loss.detach(
            )

        # insert after step hook
        self.trainer.call_hook('on_after_backward')

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(
            batch_idx, untouched_loss.detach())

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        with self.trainer.profiler.profile('model_forward'):
            args = self.build_train_args(split_batch, batch_idx, opt_idx,
                                         hiddens)
            training_step_output = self.trainer.accelerator_backend.training_step(
                args)
            training_step_output = self.trainer.call_hook(
                'training_step_end', training_step_output)

            # ----------------------------
            # PROCESS THE RESULT
            # ----------------------------
            # format and reduce outputs accordingly
            training_step_output_for_epoch_end = training_step_output
            is_result_obj = isinstance(training_step_output, Result)

            # track batch size for weighted average
            if is_result_obj:
                training_step_output.track_batch_size(len(split_batch))

            # don't allow EvalResult in the training_step
            if isinstance(training_step_output, EvalResult):
                raise MisconfigurationException(
                    'training_step cannot return EvalResult, '
                    'use a dict or TrainResult instead')

            # handle regular dicts
            if not is_result_obj:
                training_step_output = self.trainer.process_output(
                    training_step_output, train=True)

                training_step_output = AttributeDict(
                    batch_loss=training_step_output[0],
                    pbar_on_batch_end=training_step_output[1],
                    log_metrics=training_step_output[2],
                    callback_metrics=training_step_output[3],
                    hiddens=training_step_output[4],
                )

            # if the user decides to finally reduce things in epoch_end, save raw output without graphs
            if isinstance(training_step_output_for_epoch_end, torch.Tensor):
                training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
                )
            elif is_result_obj:
                training_step_output_for_epoch_end = copy(training_step_output)
                training_step_output_for_epoch_end.detach()
            else:
                training_step_output_for_epoch_end = recursive_detach(
                    training_step_output_for_epoch_end)

        # accumulate loss
        # (if accumulate_grad_batches = 1 no effect)
        closure_loss = training_step_output.minimize if is_result_obj else training_step_output.batch_loss
        closure_loss = closure_loss / self.trainer.accumulate_grad_batches

        # the loss will get scaled for amp. avoid any modifications to it
        untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
            hiddens=training_step_output.hiddens,
        )
        return result

    def optimizer_step(self, optimizer, opt_idx, batch_idx,
                       train_step_and_backward_closure):
        with self.trainer.profiler.profile('optimizer_step'):
            # optimizer step lightningModule hook
            self.trainer.accelerator_backend.optimizer_step(
                optimizer, batch_idx, opt_idx, train_step_and_backward_closure)

    def on_before_zero_grad(self, optimizer):
        model = self.trainer.get_model()
        model.on_before_zero_grad(optimizer)

    def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
        self.trainer.accelerator_backend.optimizer_zero_grad(
            batch_idx, optimizer, opt_idx)

    def on_before_backward(self, batch_idx, optimizer):
        # track gradient norms
        grad_norm_dic = self._track_gradient_norm(batch_idx)

        # clip gradients
        self.trainer.accelerator_backend.clip_gradients(optimizer)
        return grad_norm_dic

    def _track_gradient_norm(self, batch_idx):
        grad_norm_dic = {}
        if batch_idx % self.trainer.row_log_interval == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.get_model()
                grad_norm_dic = model.grad_norm(self.trainer.track_grad_norm)
        return grad_norm_dic

    def log_training_step_metrics(self, opt_closure_result,
                                  batch_callback_metrics, batch_log_metrics):
        # track callback metrics
        callback_metrics = opt_closure_result.training_step_output.callback_metrics
        batch_callback_metrics.append(callback_metrics)

        # decide which metrics to log (results vs dict return)
        using_results_obj = isinstance(opt_closure_result.training_step_output,
                                       Result)
        if using_results_obj:
            metrics_to_log = opt_closure_result.training_step_output.batch_log_metrics
            step_pbar_metrics = opt_closure_result.training_step_output.batch_pbar_metrics
        else:
            metrics_to_log = opt_closure_result.training_step_output.log_metrics
            step_pbar_metrics = opt_closure_result.training_step_output.pbar_on_batch_end

        # track batch log metrics
        batch_log_metrics.append(metrics_to_log)

        # track progress bar metrics
        if len(step_pbar_metrics) > 0:
            self.trainer.logger_connector.add_progress_bar_metrics(
                step_pbar_metrics)

    def process_hiddens(self, opt_closure_result):
        hiddens = opt_closure_result.hiddens
        if isinstance(opt_closure_result.training_step_output, Result):
            opt_closure_result.training_step_output_for_epoch_end.drop_hiddens(
            )
        return hiddens

    def tbptt_split_batch(self, batch):
        splits = [batch]
        if self.trainer.truncated_bptt_steps is not None:
            model_ref = self.trainer.get_model()
            with self.trainer.profiler.profile('tbptt_split_batch'):
                splits = model_ref.tbptt_split_batch(
                    batch, self.trainer.truncated_bptt_steps)
        return splits

    def run_training_epoch(self):

        # get model
        model = self.trainer.get_model()

        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator_backend.process_dataloader(
            self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_optimizers)]

        # enable profiling for the dataloader
        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(
            train_dataloader)
        dataloader_idx = 0
        for batch_idx, (batch, is_last_batch) in train_dataloader:
            # stop epoch if we limited the number of training batches
            if batch_idx >= self.trainer.num_training_batches:
                break

            self.trainer.batch_idx = batch_idx
            model.global_step = self.trainer.global_step

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            batch_output = self.run_training_batch(batch, batch_idx,
                                                   dataloader_idx)

            # only track outputs when user implements training_epoch_end
            # otherwise we will build up unnecessary memory
            epoch_end_outputs = self.process_train_step_outputs(
                batch_output.training_step_output_for_epoch_end,
                self.early_stopping_accumulator, self.checkpoint_accumulator)

            # hook
            self.on_train_batch_end(epoch_output, epoch_end_outputs, batch,
                                    batch_idx, dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            self.trainer.should_stop = batch_output.signal == -1

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val_fx(
                batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.run_evaluation(test_mode=False)

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end(batch_idx)

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.save_train_loop_metrics_to_loggers(
                batch_idx, batch_output)

            # update LR schedulers
            monitor_metrics = deepcopy(
                self.trainer.logger_connector.callback_metrics)
            monitor_metrics.update(batch_output.batch_log_metrics)
            self.update_train_loop_lr_schedulers(
                monitor_metrics=monitor_metrics)

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

            # max steps reached, end training
            if self.trainer.max_steps is not None and self.trainer.max_steps == self.trainer.global_step:
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.trainer.should_stop:
                break

        # process epoch outputs
        self.trainer.logger_connector.on_train_epoch_end(
            epoch_output, self.checkpoint_accumulator,
            self.early_stopping_accumulator, self.num_optimizers)

        # checkpoint callback
        self.check_checkpoint_callback(self.should_check_val)

        # epoch end hook
        self.run_on_epoch_end_hook()

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dic = {}

        # track all metrics for callbacks
        batch_callback_metrics = []

        # track metrics to log
        batch_log_metrics = []

        # bookkeeping
        using_results_obj = False
        self.trainer.hiddens = None

        # track all outputs across time and num of optimizers
        batch_outputs = [[]
                         for _ in range(len(self.get_optimizers_iterable()))]

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook('on_batch_start')
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook('on_train_batch_start', batch,
                                          batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # lightning module hook
        splits = self.tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):
            self.trainer.split_idx = split_idx

            # loop over optimizers
            for opt_idx, optimizer in self.get_optimizers_iterable():
                # make sure only the gradients of the current optimizer's parameters are calculated
                # in the training step to prevent dangling gradients in multiple-optimizer setup.
                if len(self.trainer.optimizers) > 1:
                    for param in self.trainer.get_model().parameters():
                        param.requires_grad = False
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.requires_grad = True

                # -------------------
                # calculate loss (train step + train step end)
                # -------------------
                opt_closure_result = self.training_step_and_backward(
                    split_batch, batch_idx, opt_idx, optimizer,
                    self.trainer.hiddens)

                # log metrics
                self.log_training_step_metrics(opt_closure_result,
                                               batch_callback_metrics,
                                               batch_log_metrics)

                # track hiddens
                self.trainer.hiddens = self.process_hiddens(opt_closure_result)

                # check if loss or model weights are nan
                if self.trainer.terminate_on_nan:
                    self.trainer.detect_nan_tensors(opt_closure_result.loss)

                # track total loss for logging (avoid mem leaks)
                self.accumulated_loss.append(opt_closure_result.loss)

                # track all the outputs across all steps
                batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
                batch_outputs[batch_opt_idx].append(
                    opt_closure_result.training_step_output_for_epoch_end)

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients
                accumulation_done = (
                    self.trainer.batch_idx +
                    1) % self.trainer.accumulate_grad_batches == 0
                is_final_batch = (self.trainer.batch_idx +
                                  1) == self.trainer.num_training_batches
                if accumulation_done or is_final_batch:
                    # hook
                    grad_norm_dic = self.on_before_backward(
                        batch_idx, optimizer)

                    # wrap forward + backward pass in closure for 2nd order optimizers
                    train_step_and_backward_closure = lambda: self.training_step_and_backward(
                        split_batch,
                        batch_idx,
                        opt_idx,
                        optimizer,
                        self.trainer.hiddens,
                    ).loss

                    # optimizer step
                    self.optimizer_step(optimizer, opt_idx, batch_idx,
                                        train_step_and_backward_closure)

                    # hook
                    self.on_before_zero_grad(optimizer)

                    # clear gradients
                    self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)

                    # calculate running loss for display
                    self.running_loss.append(
                        self.accumulated_loss.mean() *
                        self.trainer.accumulate_grad_batches)

                    # reset for next set of accumulated grads
                    self.accumulated_loss.reset()

        # collapse all metrics into one dict
        batch_log_metrics = {
            k: v
            for d in batch_log_metrics for k, v in d.items()
        }

        # track all metrics for callbacks
        if not using_results_obj:
            self.trainer.logger_connector.callback_metrics.update(
                {k: v
                 for d in batch_callback_metrics for k, v in d.items()})

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            batch_log_metrics=batch_log_metrics,
            training_step_output_for_epoch_end=batch_outputs)
        return result

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx,
                                   optimizer, hiddens):
        """
        wrap the forward step in a closure so second order methods work
        """
        # lightning module hook
        result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)

        # backward pass
        self.backward(result, optimizer, opt_idx)

        # hook
        self.on_after_backward(result.training_step_output, batch_idx,
                               result.loss)

        return result

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        num_accumulated_batches_reached = (
            self.trainer.batch_idx +
            1) % self.trainer.accumulate_grad_batches == 0
        num_training_batches_reached = (self.trainer.batch_idx +
                                        1) == self.trainer.num_training_batches

        if num_accumulated_batches_reached or num_training_batches_reached:
            # update lr
            self.trainer.optimizer_connector.update_learning_rates(
                interval='step', monitor_metrics=monitor_metrics)

    def run_on_epoch_end_hook(self):
        self.trainer.call_hook('on_epoch_end')
        self.trainer.call_hook('on_train_epoch_end')

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = (
            self.trainer.batch_idx +
            1) % self.trainer.accumulate_grad_batches == 0
        num_training_batches_reached = (self.trainer.batch_idx +
                                        1) == self.trainer.num_training_batches

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.trainer.global_step += 1
        self.trainer.total_batch_idx += 1

    def should_check_val_fx(self, batch_idx, is_last_batch):
        # decide if we should run validation
        is_val_check_batch = (batch_idx +
                              1) % self.trainer.val_check_batch == 0
        can_check_epoch = (self.trainer.current_epoch +
                           1) % self.trainer.check_val_every_n_epoch == 0
        can_check_val = self.trainer.enable_validation and can_check_epoch
        should_check_val = is_val_check_batch or self.trainer.should_stop
        is_last_batch_for_infinite_dataset = (is_last_batch
                                              and self.trainer.val_check_batch
                                              == float('inf'))
        should_check_val = can_check_val and (
            should_check_val or is_last_batch_for_infinite_dataset)

        return should_check_val

    def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.trainer.optimizers) > 1:
            if self.trainer.has_arg('training_step', 'optimizer_idx'):
                args.append(opt_idx)
            else:
                num_opts = len(self.trainer.optimizers)
                raise ValueError(
                    f'Your LightningModule defines {num_opts} optimizers but '
                    f'training_step is missing the "optimizer_idx" argument.')

        # pass hiddens if using tbptt
        if self.trainer.truncated_bptt_steps is not None:
            args.append(hiddens)

        return args

    def save_loggers_on_train_batch_end(self, batch_idx):
        # when loggers should save to disk
        should_save_log = (
            batch_idx + 1
        ) % self.trainer.log_save_interval == 0 or self.trainer.should_stop
        if should_save_log or self.trainer.fast_dev_run:
            if self.trainer.is_global_zero and self.trainer.logger is not None:
                self.trainer.logger.save()

    def process_train_step_outputs(self, all_train_step_outputs,
                                   early_stopping_accumulator,
                                   checkpoint_accumulator):
        """
        Figure out what needs to be tracked/logged at the end of the epoch
        """

        # the training step outputs a list per optimizer. The list contains the outputs at each time step
        # when no TBPTT is used, then the list has 1 item per batch
        # when TBPTT IS used, then the list has n items (1 per time step)
        epoch_end_outputs = []
        for optimizer_idx_outputs in all_train_step_outputs:
            # extract one representative sample from each time step (1 if no tbptt) and 0th optimizer
            sample_output = optimizer_idx_outputs[-1]

            # pull out callback info if available (ie: Results object)
            if isinstance(sample_output,
                          dict) and 'early_stop_on' in sample_output:
                early_stopping_accumulator.accumulate(
                    sample_output['early_stop_on'])

            if isinstance(sample_output,
                          dict) and 'checkpoint_on' in sample_output:
                checkpoint_accumulator.accumulate(
                    sample_output['checkpoint_on'])

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(
                sample_output,
                Result) and sample_output.should_reduce_on_epoch_end

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if is_overridden(
                    'training_epoch_end',
                    model=self.trainer.get_model()) or auto_reduce_tng_result:
                epoch_end_outputs.append(optimizer_idx_outputs)

        return epoch_end_outputs
예제 #19
0
    def train(self):
        # add signal handlers for process kills
        # def _signal_kill_handler(*args):
        #     return TrainerTrainLoopMixin.run_training_teardown(self)
        #
        # orig_signal_handlers = {}
        # for sig_name in SIGNAL_TERMINATE:
        #     orig_signal_handlers[sig_name] = signal.signal(getattr(signal, sig_name),
        #                                                    _signal_kill_handler)

        # get model
        model = self.get_model()

        # enable train mode
        model.train()

        # enable gradients
        torch.set_grad_enabled(True)

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)
        self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(
                    self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches)

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps <= self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                if self.should_stop:
                    if (met_min_epochs and met_min_steps) or self.fast_dev_run:
                        self.run_training_teardown()
                        return
                    else:
                        log.info(
                            'Trainer was signaled to stop but required minimum epochs'
                            f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
                            ' not been met. Training will continue...')

            self.run_training_teardown()

        except KeyboardInterrupt:
            rank_zero_warn(
                'Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True
                self.on_keyboard_interrupt()

                self.run_training_teardown()
예제 #20
0
class TrainerTrainLoopMixin(ABC):
    # this is just a summary on variables used in this abstract class,
    #  the proper values/initialisation should be done in child class
    max_epochs: int
    min_epochs: int
    on_gpu: bool
    use_ddp: bool
    use_dp: bool
    use_ddp2: bool
    use_horovod: bool
    single_gpu: bool
    use_tpu: bool
    data_parallel_device_ids:...
    check_val_every_n_epoch:...
    num_training_batches: int
    val_check_batch:...
    disable_validation: bool
    fast_dev_run:...
    accumulation_scheduler:...
    lr_schedulers:...
    early_stop_callback:...
    callback_metrics:...
    logger: Union[LightningLoggerBase, bool]
    global_step: int
    testing: bool
    log_save_interval: float
    global_rank: int
    row_log_interval: float
    truncated_bptt_steps:...
    optimizers:...
    optimizer_frequencies:...
    accumulate_grad_batches: int
    track_grad_norm:...
    model: LightningModule
    interrupted: bool
    running_loss:...
    progress_bar_dict:...
    reduce_lr_on_plateau_scheduler:...
    profiler:...
    batch_idx: int
    precision:...
    train_dataloader: DataLoader
    reload_dataloaders_every_epoch: bool
    max_steps: int
    min_steps: int
    total_batch_idx: int
    terminate_on_nan: bool
    tpu_id: int
    interactive_ddp_procs:...

    # Callback system
    callbacks: List[Callback]
    on_train_start: Callable
    on_train_end: Callable
    on_batch_start: Callable
    on_batch_end: Callable
    on_epoch_start: Callable
    on_epoch_end: Callable
    on_validation_end: Callable
    on_keyboard_interrupt: Callable

    @abstractmethod
    def get_model(self) -> LightningModule:
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def is_function_implemented(self, *args, **kwargs):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def run_evaluation(self, *args, **kwargs):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def transfer_batch_to_gpu(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def transfer_batch_to_tpu(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def clip_gradients(self):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def detect_nan_tensors(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def is_overridden(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def add_progress_bar_metrics(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def log_metrics(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def process_output(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def reset_train_dataloader(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def reset_val_dataloader(self, model):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def has_arg(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    def train(self):
        # add signal handlers for process kills
        # def _signal_kill_handler(*args):
        #     return TrainerTrainLoopMixin.run_training_teardown(self)
        #
        # orig_signal_handlers = {}
        # for sig_name in SIGNAL_TERMINATE:
        #     orig_signal_handlers[sig_name] = signal.signal(getattr(signal, sig_name),
        #                                                    _signal_kill_handler)

        # get model
        model = self.get_model()

        # enable train mode
        model.train()

        # enable gradients
        torch.set_grad_enabled(True)

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)
        self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(
                    self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches)

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps <= self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                if self.should_stop:
                    if (met_min_epochs and met_min_steps) or self.fast_dev_run:
                        self.run_training_teardown()
                        return
                    else:
                        log.info(
                            'Trainer was signaled to stop but required minimum epochs'
                            f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
                            ' not been met. Training will continue...')

            self.run_training_teardown()

        except KeyboardInterrupt:
            rank_zero_warn(
                'Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True
                self.on_keyboard_interrupt()

                self.run_training_teardown()

    def prepare_train_loop_dataloader(self, train_dataloader):
        # on TPU we have to wrap it under the ParallelLoader
        if self.use_tpu:
            device = xm.xla_device(self.tpu_id)
            train_dataloader = xla_pl.ParallelLoader(train_dataloader,
                                                     [device])
            train_dataloader = train_dataloader.per_device_loader(device)

        return train_dataloader

    def run_on_epoch_start_hook(self, model):
        # Epoch start events
        with self.profiler.profile('on_epoch_start'):
            # callbacks
            self.on_epoch_start()

            # model hooks
            if self.is_function_implemented('on_epoch_start'):
                model.on_epoch_start()

    def run_training_epoch(self):

        # get model
        model = self.get_model()

        # Epoch start events
        self.run_on_epoch_start_hook(model)

        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.prepare_train_loop_dataloader(
            self.train_dataloader)

        # bookkeeping
        epoch_output = []
        should_check_val = False

        # run epoch
        for batch_idx, (batch,
                        is_last_batch) in self.profiler.profile_iterable(
                            enumerate(_with_is_last(train_dataloader)),
                            "get_train_batch"):
            # stop epoch if we limited the number of training batches
            if batch_idx >= self.num_training_batches:
                break

            self.batch_idx = batch_idx
            model.global_step = self.global_step

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            batch_output = self.run_training_batch(batch, batch_idx)

            # only track outputs when user implements training_epoch_end
            # otherwise we will build up unnecessary memory
            if self.is_overridden('training_epoch_end',
                                  model=self.get_model()):
                epoch_output.append(
                    batch_output.training_step_output_for_epoch_end)

            # update LR schedulers
            self.update_train_loop_lr_schedulers()

            # when returning -1 from train_step, we end epoch early
            self.should_stop = batch_output.signal == -1

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val(batch_idx, is_last_batch)
            if self.fast_dev_run or should_check_val:
                self.run_evaluation(test_mode=False)

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_in_training_loop(batch_idx)

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.save_train_loop_metrics_to_loggers(batch_idx, batch_output)

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

            # max steps reached, end training
            if self.max_steps is not None and self.max_steps == self.global_step:
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.fast_dev_run or self.should_stop:
                break

        # let ddp devices catch up when using horovod
        self.sync_horovod()

        # process epoch outputs
        self.run_training_epoch_end(epoch_output)

        # checkpoint callback
        self.check_checkpoint_callback(should_check_val)

        # epoch end hook
        self.run_on_epoch_end_hook(model)

    def check_checkpoint_callback(self, should_check_val):
        # when no val loop is present or fast-dev-run still need to call checkpoints
        # TODO bake this logic into the checkpoint callback
        should_activate = not self.is_overridden('validation_step') and not (
            self.fast_dev_run or should_check_val)
        if should_activate:
            checkpoint_callbacks = [
                c for c in self.callbacks if isinstance(c, ModelCheckpoint)
            ]
            [
                c.on_validation_end(self, self.get_model())
                for c in checkpoint_callbacks
            ]

    def update_train_loop_lr_schedulers(self):
        if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
            # update lr
            self.update_learning_rates(interval='step')

    def run_on_epoch_end_hook(self, model):
        with self.profiler.profile('on_epoch_end'):
            # callbacks
            self.on_epoch_end()
            # model hooks
            if self.is_function_implemented('on_epoch_end'):
                model.on_epoch_end()

    def run_training_epoch_end(self, epoch_output):
        model = self.get_model()
        if self.is_overridden('training_epoch_end', model=model):
            self.global_step += 1
            epoch_output = model.training_epoch_end(epoch_output)
            _processed_outputs = self.process_output(epoch_output)
            log_epoch_metrics = _processed_outputs[2]
            callback_epoch_metrics = _processed_outputs[3]

            # add the metrics to the loggers
            self.log_metrics(log_epoch_metrics, {})

            # add metrics to callbacks
            self.callback_metrics.update(callback_epoch_metrics)

            # add metrics to progress_bar
            self.add_progress_bar_metrics(_processed_outputs[1])

    def sync_horovod(self):
        if self.use_horovod:
            hvd.join(hvd.local_rank() if self.on_gpu else -1)

    def increment_accumulated_grad_global_step(self):
        # progress global step according to grads progress
        if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
            self.global_step += 1
        self.total_batch_idx += 1

    def save_train_loop_metrics_to_loggers(self, batch_idx, batch_output):
        # when metrics should be logged
        should_log_metrics = batch_idx % self.row_log_interval == 0 or self.should_stop
        if should_log_metrics or self.fast_dev_run:
            # logs user requested information to logger
            self.log_metrics(batch_output.batch_log_metrics,
                             batch_output.grad_norm_dic)

    def save_loggers_in_training_loop(self, batch_idx):
        # when loggers should save to disk
        should_save_log = (batch_idx +
                           1) % self.log_save_interval == 0 or self.should_stop
        if should_save_log or self.fast_dev_run:
            if self.is_global_zero and self.logger is not None:
                self.logger.save()

    def should_check_val(self, batch_idx, is_last_batch):
        # decide if we should run validation
        is_val_check_batch = (batch_idx + 1) % self.val_check_batch == 0
        can_check_epoch = (self.current_epoch +
                           1) % self.check_val_every_n_epoch == 0
        can_check_val = not self.disable_validation and can_check_epoch
        should_check_val = is_val_check_batch or self.should_stop
        is_last_batch_for_infinite_dataset = (is_last_batch
                                              and self.val_check_batch
                                              == float('inf'))
        should_check_val = can_check_val and (
            should_check_val or is_last_batch_for_infinite_dataset)

        return should_check_val

    def run_training_batch(self, batch, batch_idx):
        # track grad norms
        grad_norm_dic = {}

        # track all metrics for callbacks
        batch_callback_metrics = []

        # track metrics to log
        batch_log_metrics = []

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # Batch start events
        with self.profiler.profile('on_batch_start'):
            # callbacks
            self.on_batch_start()
            # hooks
            if self.is_function_implemented('on_batch_start'):
                response = self.get_model().on_batch_start(batch)
                if response == -1:
                    return AttributeDict(signal=-1,
                                         grad_norm_dic=grad_norm_dic)

        splits = [batch]
        if self.truncated_bptt_steps is not None:
            model_ref = self.get_model()
            with self.profiler.profile('tbptt_split_batch'):
                splits = model_ref.tbptt_split_batch(batch,
                                                     self.truncated_bptt_steps)

        self.hiddens = None
        for split_idx, split_batch in enumerate(splits):
            self.split_idx = split_idx

            for opt_idx, optimizer in self._get_optimizers_iterable():
                # make sure only the gradients of the current optimizer's parameters are calculated
                # in the training step to prevent dangling gradients in multiple-optimizer setup.
                if len(self.optimizers) > 1:
                    for param in self.get_model().parameters():
                        param.requires_grad = False
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.requires_grad = True

                # -------------------
                # calculate loss
                # -------------------
                opt_closure_result = self.optimizer_closure(
                    split_batch, batch_idx, opt_idx, optimizer, self.hiddens)

                # ------------------------------
                # POST forward bookkeeping
                # ------------------------------
                batch_callback_metrics.append(
                    opt_closure_result.training_step_output.callback_metrics)
                batch_log_metrics.append(
                    opt_closure_result.training_step_output.log_metrics)

                self.add_progress_bar_metrics(
                    opt_closure_result.training_step_output.pbar_on_batch_end)

                # track hiddens
                self.hiddens = opt_closure_result.hiddens

                # check if loss or model weights are nan
                if self.terminate_on_nan:
                    self.detect_nan_tensors(opt_closure_result.loss)

                # track total loss for logging (avoid mem leaks)
                self.batch_loss_value.append(opt_closure_result.loss)

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients
                if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:

                    # backward
                    grad_norm_dic = self.run_batch_backward_pass(
                        split_batch, batch_idx, opt_idx, optimizer)

                    # calculate running loss for display
                    self.running_loss.append(self.batch_loss_value.mean())

                    # reset for next set of accumulated grads
                    self.batch_loss_value.reset()

        # Batch end events
        with self.profiler.profile('on_batch_end'):
            # callbacks
            self.on_batch_end()
            # model hooks
            if self.is_function_implemented('on_batch_end'):
                self.get_model().on_batch_end()

        # collapse all metrics into one dict
        batch_log_metrics = {
            k: v
            for d in batch_log_metrics for k, v in d.items()
        }

        # track all metrics for callbacks
        self.callback_metrics.update(
            {k: v
             for d in batch_callback_metrics for k, v in d.items()})

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            batch_log_metrics=batch_log_metrics,
            training_step_output_for_epoch_end=opt_closure_result.
            training_step_output_for_epoch_end)
        return result

    def run_batch_backward_pass(self, split_batch, batch_idx, opt_idx,
                                optimizer):
        # ------------------
        # GRAD NORMS
        # ------------------
        # track gradient norms when requested
        grad_norm_dic = {}
        if batch_idx % self.row_log_interval == 0:
            if float(self.track_grad_norm) > 0:
                model = self.get_model()
                grad_norm_dic = model.grad_norm(self.track_grad_norm)

        # ------------------
        # CLIP GRADS
        # ------------------
        if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu:
            self.scaler.unscale_(optimizer)
        self.clip_gradients()

        # ------------------
        # .STEP + ZERO_GRAD
        # ------------------
        self.call_optimizer_step(optimizer, opt_idx, batch_idx, split_batch)

        return grad_norm_dic

    def call_optimizer_step(self, optimizer, opt_idx, batch_idx, split_batch):
        # calls .step(), .zero_grad()
        # override function to modify this behavior
        model = self.get_model()

        with self.profiler.profile('optimizer_step'):
            lambda_closure = lambda: self.optimizer_closure(
                split_batch, batch_idx, opt_idx, optimizer, self.hiddens).loss

            # apply TPU optimizer
            if self.use_tpu and XLA_AVAILABLE:
                model.optimizer_step(self.current_epoch,
                                     batch_idx,
                                     optimizer,
                                     opt_idx,
                                     lambda_closure,
                                     on_tpu=True)

            # for LBFGS do something a bit different
            elif isinstance(optimizer, torch.optim.LBFGS):

                # native amp + lbfgs is a no go right now
                if self.use_amp and NATIVE_AMP_AVALAIBLE:
                    raise MisconfigurationException(
                        'native PyTorch amp and lbfgs are not compatible.'
                        ' To request, please file a Github issue in PyTorch and tag @mcarilli'
                    )
                model.optimizer_step(self.current_epoch,
                                     batch_idx,
                                     optimizer,
                                     opt_idx,
                                     lambda_closure,
                                     using_lbfgs=True)

            # when using 16-bit
            else:
                native_amp = self.use_amp and NATIVE_AMP_AVALAIBLE
                model.optimizer_step(self.current_epoch,
                                     batch_idx,
                                     optimizer,
                                     opt_idx,
                                     lambda_closure,
                                     using_native_amp=native_amp)

            # in native 16-bit we need to update scaler after optimizer step
            if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu:
                self.scaler.update()

            # model hook
            model.on_before_zero_grad(optimizer)

            # clear gradients
            model.optimizer_zero_grad(self.current_epoch, batch_idx, optimizer,
                                      opt_idx)

    def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer,
                          hiddens):
        """
        wrap the forward step in a closure so second order methods work
        """
        # ---------------------------
        # FORWARD
        # ---------------------------
        with self.profiler.profile('model_forward'):
            if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu:
                with torch.cuda.amp.autocast():
                    training_step_output = self.training_forward(
                        split_batch, batch_idx, opt_idx, hiddens)
            else:
                training_step_output = self.training_forward(
                    split_batch, batch_idx, opt_idx, hiddens)

            # ----------------------------
            # PROCESS THE RESULT
            # ----------------------------
            # format and reduce outputs accordingly
            training_step_output_for_epoch_end = training_step_output
            training_step_output = self.process_output(training_step_output,
                                                       train=True)

            # TODO: temporary part of structured results PR
            training_step_output = AttributeDict(
                batch_loss=training_step_output[0],
                pbar_on_batch_end=training_step_output[1],
                log_metrics=training_step_output[2],
                callback_metrics=training_step_output[3],
                hiddens=training_step_output[4],
            )

            # if the user decides to finally reduce things in epoch_end, save raw output without graphs
            if isinstance(training_step_output_for_epoch_end, torch.Tensor):
                training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
                )
            else:
                training_step_output_for_epoch_end = recursive_detach(
                    training_step_output_for_epoch_end)

        # accumulate loss
        # (if accumulate_grad_batches = 1 no effect)
        closure_loss = training_step_output.batch_loss / self.accumulate_grad_batches

        # the loss will get scaled for amp. avoid any modifications to it
        untouched_loss = closure_loss.detach().clone()

        # backward pass
        model_ref = self.get_model()
        with self.profiler.profile('model_backward'):
            # scale loss for 16 bit
            if self.precision == 16 and not self.on_tpu:
                closure_loss = model_ref.amp_scale_loss(
                    closure_loss, optimizer, opt_idx)

                # enter amp context
                if not NATIVE_AMP_AVALAIBLE:
                    context = closure_loss
                    closure_loss = closure_loss.__enter__()

            # do backward pass
            model_ref.backward(self, closure_loss, optimizer, opt_idx)

            # exit amp context
            if self.precision == 16 and not NATIVE_AMP_AVALAIBLE and not self.on_tpu:
                a, b, c = None, None, None
                error = context.__exit__(a, b, c)
                if error:
                    rank_zero_warn(a, b, c)
                    raise Exception('apex unscale error')

            # once backward has been applied, release graph
            closure_loss = closure_loss.detach()
            training_step_output.batch_loss = training_step_output.batch_loss.detach(
            )

        if self.use_horovod:
            # Synchronize Horovod to ensure gradient manipulations (e.g., loss scaling) are valid
            optimizer.synchronize()

        # insert after step hook
        if self.is_function_implemented('on_after_backward'):
            model_ref = self.get_model()
            with self.profiler.profile('on_after_backward'):
                model_ref.on_after_backward()

        result = AttributeDict(
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
            hiddens=training_step_output.hiddens,
        )
        return result

    def _get_optimizers_iterable(self):
        if not self.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [(opt_idx, self.optimizers[opt_idx])]

    # @atexit.register
    def run_training_teardown(self):
        if hasattr(self,
                   '_teardown_already_run') and self._teardown_already_run:
            return

        self._teardown_already_run = True

        # Train end events
        with self.profiler.profile('on_train_end'):
            # callbacks
            self.on_train_end()
            # model hooks
            if self.is_function_implemented('on_train_end'):
                self.get_model().on_train_end()

        if self.logger is not None:
            self.logger.finalize("success")

        # summarize profile results
        if self.global_rank == 0:
            self.profiler.describe()

        if self.global_rank == 0:
            for proc in self.interactive_ddp_procs:
                subprocess.Popen.kill(proc)

        # clean up dist group
        if self.use_ddp or self.use_ddp2:
            torch_distrib.destroy_process_group()

        # clear mem
        if self.on_gpu:
            model = self.get_model()
            model.cpu()
            torch.cuda.empty_cache()

    def training_forward(self, batch, batch_idx, opt_idx, hiddens):
        """
        Handle forward for each training case (distributed, single gpu, etc...)
        :param batch:
        :param batch_idx:
        :return:
        """
        # ---------------
        # FORWARD
        # ---------------
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.optimizers) > 1:
            if self.has_arg('training_step', 'optimizer_idx'):
                args.append(opt_idx)
            else:
                num_opts = len(self.optimizers)
                raise ValueError(
                    f'Your LightningModule defines {num_opts} optimizers but '
                    f'training_step is missing the "optimizer_idx" argument.')

        # pass hiddens if using tbptt
        if self.truncated_bptt_steps is not None:
            args.append(hiddens)

        # distributed forward
        if self.use_ddp or self.use_ddp2 or self.use_dp:
            output = self.model(*args)

        # Horovod
        elif self.use_horovod and self.on_gpu:
            batch = self.transfer_batch_to_gpu(batch, hvd.local_rank())
            args[0] = batch
            output = self.model.training_step(*args)

        # single GPU forward
        elif self.single_gpu:
            gpu_id = 0
            if isinstance(self.data_parallel_device_ids, list):
                gpu_id = self.data_parallel_device_ids[0]

            # Don't copy the batch since there is a single gpu that the batch could
            # be referenced from and if there are multiple optimizers the batch will
            # wind up copying it to the same device repeatedly.
            batch = self.transfer_batch_to_gpu(batch, gpu_id)
            args[0] = batch
            output = self.model.training_step(*args)

        # TPU support
        elif self.use_tpu:
            batch = self.transfer_batch_to_tpu(batch, self.tpu_id)
            args[0] = batch
            output = self.model.training_step(*args)

        # CPU forward
        else:
            output = self.model.training_step(*args)

        # allow any mode to define training_step_end
        # do something will all the dp outputs (like softmax)
        if self.is_overridden('training_step_end'):
            model_ref = self.get_model()
            with self.profiler.profile('training_step_end'):
                output = model_ref.training_step_end(output)

        # allow any mode to define training_end
        # TODO: remove in 1.0.0
        if self.is_overridden('training_end'):
            model_ref = self.get_model()
            with self.profiler.profile('training_end'):
                output = model_ref.training_end(output)

            rank_zero_warn(
                '`training_end` was deprecated in 0.7.0 and will be removed 1.0.0.'
                ' Use training_epoch_end instead', DeprecationWarning)

        return output

    def update_learning_rates(self, interval: str):
        """Update learning rates.

        Args:
            interval: either 'epoch' or 'step'.
        """
        if not self.lr_schedulers:
            return

        for lr_scheduler in self.lr_schedulers:
            current_idx = self.batch_idx if interval == 'step' else self.current_epoch
            current_idx += 1  # account for both batch and epoch starts from 0
            # Take step if call to update_learning_rates matches the interval key and
            # the current step modulo the schedulers frequency is zero
            if lr_scheduler[
                    'interval'] == interval and current_idx % lr_scheduler[
                        'frequency'] == 0:
                # If instance of ReduceLROnPlateau, we need to pass validation loss
                if lr_scheduler['reduce_on_plateau']:
                    monitor_key = lr_scheduler['monitor']
                    monitor_val = self.callback_metrics.get(monitor_key)
                    if monitor_val is None:
                        avail_metrics = ','.join(
                            list(self.callback_metrics.keys()))
                        raise MisconfigurationException(
                            f'ReduceLROnPlateau conditioned on metric {monitor_key}'
                            f' which is not available. Available metrics are: {avail_metrics}.'
                            ' Condition can be set using `monitor` key in lr scheduler dict'
                        )
                    lr_scheduler['scheduler'].step(monitor_val)
                else:
                    lr_scheduler['scheduler'].step()
예제 #21
0
    def train(self):
        # get model
        model = self.get_model()

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)
        self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # initialize early stop callback
            if self.early_stop_callback is not None:
                self.early_stop_callback.on_train_start(self, self.get_model())
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches
                )

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps == self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                # TODO wrap this logic into the callback
                if self.enable_early_stop:
                    if (met_min_epochs and met_min_steps) or self.fast_dev_run:
                        should_stop = self.early_stop_callback.on_epoch_end(self, self.get_model())
                        # stop training
                        stop = should_stop and met_min_epochs
                        if stop:
                            self.run_training_teardown()
                            return

            self.run_training_teardown()

        except KeyboardInterrupt:
            if self.proc_rank == 0:
                log.info('Detected KeyboardInterrupt, attempting graceful shutdown...')
            self.interrupted = True
            self.run_training_teardown()
예제 #22
0
class TrainLoop:
    def __init__(
        self,
        trainer,
        max_epochs: Optional[int],
        min_epochs: Optional[int],
        max_steps: Optional[int],
        min_steps: Optional[int],
        num_sanity_val_steps: int,
    ):
        self.trainer = trainer
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self._skip_backward = False
        self._optimizer_freq_cumsum = None
        self._hiddens = None

        self.global_step = 0
        self.current_epoch = 0
        self.trainer.should_stop = False

        # the total batch index across all epochs
        self.total_batch_idx = 0
        # the current batch index in the loop that runs over the dataloader(s)
        self.batch_idx = 0
        # the current split index when the batch gets split into chunks in truncated backprop through time
        self.split_idx = None

        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.max_epochs = 1000 if (max_epochs is None
                                   and max_steps is None) else max_epochs
        # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
        self.min_epochs = 1 if (min_epochs is None
                                and min_steps is None) else min_epochs
        self.max_steps = max_steps
        self.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

    @property
    def num_active_optimizers(self) -> int:
        return len(self.get_active_optimizers())

    @property
    def optimizer_freq_cumsum(self):
        if self._optimizer_freq_cumsum is None:
            self._optimizer_freq_cumsum = np.cumsum(
                self.trainer.optimizer_frequencies)
        return self._optimizer_freq_cumsum

    def should_skip_training(self) -> bool:
        should_by_max_steps = self.max_steps is not None and self.global_step >= self.max_steps
        should_by_epoch = self.max_epochs is not None and self.current_epoch >= self.max_epochs
        return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0

    def on_train_start(self):
        # hook
        self.trainer.call_hook("on_train_start")

    def on_train_end(self):
        if self._teardown_already_run:
            return
        self._teardown_already_run = True

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.global_step -= 1
        self.check_checkpoint_callback(should_update=True, is_last=True)
        self.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
        # It might be related to xla tensors blocked when moving the cpu
        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator.on_train_end()

        # reset bookkeeping
        self.trainer.state.stage = None

    def check_checkpoint_callback(self, should_update, is_last=False):
        # TODO bake this logic into the ModelCheckpoint callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = self.trainer.checkpoint_callbacks

            if is_last and any(cb.save_last and cb.verbose
                               for cb in callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.current_epoch = epoch

        model = self.trainer.lightning_module

        # reset train dataloader
        if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # todo: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(
            self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")

    def on_train_batch_end(self, epoch_output, batch_end_outputs, batch,
                           batch_idx, dataloader_idx):
        batch_end_outputs = [
            opt_idx_out for opt_idx_out in batch_end_outputs
            if len(opt_idx_out)
        ]

        processed_batch_end_outputs = TrainLoop._prepare_outputs(
            batch_end_outputs, batch_mode=True)

        # hook
        self.trainer.call_hook('on_train_batch_end',
                               processed_batch_end_outputs, batch, batch_idx,
                               dataloader_idx)
        self.trainer.call_hook('on_batch_end')

        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)

        # reset batch logger internals
        self.trainer.logger_connector.on_train_batch_end()

    def reset_train_val_dataloaders(self, model) -> None:
        """
        Resets train and val dataloaders if none are attached to the trainer.

        The val dataloader must be initialized before training loop starts, as the training loop
        inspects the val dataloader to determine whether to run the evaluation loop.
        """
        if self.trainer.train_dataloader is None:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):

        hook_overridden = self._should_add_batch_output_to_epoch_output()

        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(batch_end_outputs):
            sample_output = opt_outputs[-1]

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(
                sample_output,
                Result) and sample_output.should_reduce_on_epoch_end

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if not (hook_overridden or auto_reduce_tng_result):
                continue

            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs,
                          list) and len(opt_outputs) == 1 and not isinstance(
                              opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]

            epoch_output[opt_idx].append(opt_outputs)

    def _should_add_batch_output_to_epoch_output(self) -> bool:
        # We add to the epoch outputs if
        # 1. The model defines training_epoch_end OR
        # 2. The model overrides on_train_epoch_end which has `outputs` in the signature
        # TODO: in v1.5 this only needs to check if training_epoch_end is overridden
        lightning_module = self.trainer.lightning_module
        if is_overridden("training_epoch_end", model=lightning_module):
            return True

        if is_overridden("on_train_epoch_end", model=lightning_module):
            model_hook_fx = getattr(lightning_module, "on_train_epoch_end")
            if is_param_in_hook_signature(model_hook_fx, "outputs"):
                return True

        return False

    def get_active_optimizers(
            self,
            batch_idx: Optional[int] = None) -> List[Tuple[int, Optimizer]]:
        """
        Returns the currently active optimizers. When multiple optimizers are used with different frequencies,
        only one of the optimizers is active at a time.

        Returns:
            A list of tuples (opt_idx, optimizer) of currently active optimizers.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        batch_idx = self.total_batch_idx if batch_idx is None else batch_idx
        optimizers_loop_length = self.optimizer_freq_cumsum[-1]
        current_place_in_loop = batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = int(
            np.argmax(self.optimizer_freq_cumsum > current_place_in_loop))
        return [(opt_idx, self.trainer.optimizers[opt_idx])]

    def on_after_backward(self, training_step_output, batch_idx,
                          untouched_loss):
        training_step_output.detach()

        # insert after step hook
        self.trainer.call_hook("on_after_backward")

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(
            batch_idx, untouched_loss.detach())

    def _check_training_step_output(self, training_step_output):
        if isinstance(
                training_step_output, torch.Tensor
        ) and not self.trainer.lightning_module.automatic_optimization:
            if training_step_output.grad_fn is None:
                # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
                raise MisconfigurationException(
                    "In manual optimization, `training_step` should not return a Tensor"
                )

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        # give the PL module a result for logging
        model_ref = self.trainer.lightning_module

        with self.trainer.profiler.profile("model_forward"):
            step_kwargs = self._build_kwargs(split_batch, batch_idx, opt_idx,
                                             hiddens)

            # manually capture logged metrics
            model_ref._current_fx_name = 'training_step'
            model_ref._results = Result()
            with self.trainer.profiler.profile("training_step"):
                training_step_output = self.trainer.accelerator.training_step(
                    step_kwargs)
                self.trainer.accelerator.post_training_step()

            self.trainer.logger_connector.cache_logged_metrics()

            self._check_training_step_output(training_step_output)

            training_step_output = self.trainer.call_hook(
                "training_step_end", training_step_output)

            training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
                training_step_output, split_batch)
            if training_step_output_for_epoch_end is None:
                return

        # enable empty loss when using manual opt
        closure_loss = None
        untouched_loss = None

        if self.trainer.lightning_module.automatic_optimization:
            # accumulate loss. if accumulate_grad_batches==1, no effect
            closure_loss = training_step_output.minimize / self.trainer.accumulate_grad_batches

            # the loss will get scaled for amp. avoid any modifications to it
            untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
        )
        return result

    def _process_training_step_output(self, training_step_output, split_batch):
        training_step_output_for_epoch_end = training_step_output

        # enable validation_step return None
        if training_step_output_for_epoch_end is None:
            return None, None

        result = self.trainer.lightning_module._results

        loss = None
        hiddens = None
        result["extra"] = {}

        # handle dict return
        if isinstance(training_step_output, dict):
            loss = training_step_output.pop("loss", None)
            hiddens = training_step_output.pop("hiddens", None)
            if hiddens is not None:
                hiddens = hiddens.detach()
            result["extra"] = training_step_output

        # handle scalar return
        elif isinstance(training_step_output, torch.Tensor):
            loss = training_step_output

        # map to results under the hood
        result.minimize = loss
        self._hiddens = hiddens

        # track batch for manual reduction with result
        result.track_batch_size(len(split_batch))

        # track metrics without grads for epoch reduction
        training_step_output_for_epoch_end = copy(result)
        training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
        )
        if self.trainer.move_metrics_to_cpu:
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu(
            )

        return training_step_output_for_epoch_end, result

    @staticmethod
    def _prepare_outputs(
        outputs: List[List[List[Result]]],
        batch_mode: bool,
    ) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]:
        """
        Extract required information from batch or epoch end results.

        Args:
            outputs: A 3-dimensional list of ``Result`` objects with dimensions:
                [optimizer outs][batch outs][tbptt steps].

            batch_mode: If True, ignore the batch output dimension.

        Returns:
            The cleaned outputs with ``Result`` objects converted to dictionaries. All list dimensions of size one will
            be collapsed.
        """
        processed_outputs = []
        for opt_outputs in outputs:
            # handle an edge case where an optimizer output is the empty list
            if len(opt_outputs) == 0:
                continue

            processed_batch_outputs = []

            if batch_mode:
                opt_outputs = [opt_outputs]

            for batch_outputs in opt_outputs:
                processed_tbptt_outputs = []

                for tbptt_output in batch_outputs:
                    out = tbptt_output.extra
                    out['loss'] = tbptt_output.minimize
                    processed_tbptt_outputs.append(out)

                # if there was only one tbptt step then we can collapse that dimension
                if len(processed_tbptt_outputs) == 1:
                    processed_tbptt_outputs = processed_tbptt_outputs[0]
                processed_batch_outputs.append(processed_tbptt_outputs)

            # batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer
            if batch_mode:
                processed_batch_outputs = processed_batch_outputs[0]
            processed_outputs.append(processed_batch_outputs)

        # if there is only one optimiser then we collapse that dimension
        if len(processed_outputs) == 1:
            processed_outputs = processed_outputs[0]
        return processed_outputs

    def optimizer_step(self, optimizer, opt_idx, batch_idx,
                       train_step_and_backward_closure):
        model_ref = self.trainer.lightning_module

        is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
        using_native_amp = self.trainer.amp_backend == AMPType.NATIVE

        # native amp + lbfgs is a no go right now
        if using_native_amp and is_lbfgs:
            raise MisconfigurationException(
                'native PyTorch amp and lbfgs are not compatible.'
                ' To request, please file a Github issue in PyTorch and tag @mcarilli'
            )

        # wraps into LightningOptimizer only for running step
        optimizer = LightningOptimizer._to_lightning_optimizer(
            optimizer, self.trainer, opt_idx)

        # model hook
        model_ref.optimizer_step(
            self.trainer.current_epoch,
            batch_idx,
            optimizer,
            opt_idx,
            train_step_and_backward_closure,
            on_tpu=self.trainer._device_type == DeviceType.TPU
            and _TPU_AVAILABLE,
            using_native_amp=using_native_amp,
            using_lbfgs=is_lbfgs,
        )

    def on_before_zero_grad(self, optimizer):
        self.trainer.call_hook('on_before_zero_grad', optimizer)

    def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
        self.trainer.accelerator.optimizer_zero_grad(
            self.trainer.current_epoch, batch_idx, optimizer, opt_idx)

    def track_and_norm_grad(self, optimizer) -> dict:
        # track gradient norms
        grad_norm_dict = self._track_gradient_norm()

        # clip gradients
        self.trainer.accelerator.clip_gradients(
            optimizer,
            self.trainer.gradient_clip_val,
            gradient_clip_algorithm=self.trainer.gradient_clip_algorithm)
        return grad_norm_dict

    def _track_gradient_norm(self):
        grad_norm_dict = {}
        if (self.global_step + 1) % self.trainer.log_every_n_steps == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.lightning_module
                grad_norm_dict = grad_norm(model, self.trainer.track_grad_norm)
        return grad_norm_dict

    def _tbptt_split_batch(self, batch: Any) -> List[Any]:
        splits = [batch]
        truncated_bptt_enabled = self._truncated_bptt_enabled()
        if truncated_bptt_enabled:
            model_ref = self.trainer.lightning_module
            with self.trainer.profiler.profile("tbptt_split_batch"):
                splits = model_ref.tbptt_split_batch(
                    batch, self._truncated_bptt_steps())
        return splits

    def run_training_epoch(self):
        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator.process_dataloader(
            self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_active_optimizers)]

        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(
            train_dataloader)
        dataloader_idx = 0

        batch_idx = None
        is_last_batch = None

        for batch_idx, (batch, is_last_batch) in train_dataloader:
            self.batch_idx = batch_idx

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.run_training_batch(batch, batch_idx,
                                                       dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            if batch_output.signal == -1:
                break

            # hook
            # TODO: add outputs to batches
            self.on_train_batch_end(
                epoch_output,
                batch_output.training_step_output_for_epoch_end,
                batch,
                batch_idx,
                dataloader_idx,
            )

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.log_train_step_metrics(batch_output)

            # -----------------------------------------
            # VALIDATE IF NEEDED
            # -----------------------------------------
            should_check_val = self._should_check_val_fx(
                batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.validating = True
                self.trainer._run_evaluation()
                self.trainer.training = True

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end()

            # update LR schedulers
            monitor_metrics = deepcopy(
                self.trainer.logger_connector.callback_metrics)
            self.update_train_loop_lr_schedulers(
                monitor_metrics=monitor_metrics)
            self.trainer.checkpoint_connector.has_trained = True

            # max steps reached, end training
            if (self.max_steps is not None
                    and self.max_steps <= self.global_step + 1
                    and self._accumulated_batches_reached()):
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.trainer.should_stop:
                break

            self.total_batch_idx += 1

            # stop epoch if we limited the number of training batches
            if self._num_training_batches_reached(is_last_batch):
                break

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

        if batch_idx is None:
            # dataloader/iterator did not produce a batch
            return

        # handle epoch_output on epoch end
        self.on_train_epoch_end(epoch_output)

        # log epoch metrics
        self.trainer.logger_connector.log_train_epoch_end_metrics(epoch_output)

        should_check_val = self._should_check_val_fx(batch_idx,
                                                     is_last_batch,
                                                     on_epoch=True)
        should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(
            self.trainer.num_val_batches)
        should_train_only = self.trainer.disable_validation or should_skip_eval

        # update epoch level lr_schedulers if no val loop outside train loop is triggered
        if not should_check_val or should_train_only:
            self.trainer.optimizer_connector.update_learning_rates(
                interval='epoch')

        if should_train_only:
            self.check_checkpoint_callback(True)

        if should_check_val:
            self.trainer.validating = True
            self.trainer._run_evaluation(on_epoch=True)
            self.trainer.training = True

        # increment the global step once
        # progress global step according to grads progress
        self.increment_accumulated_grad_global_step()

    def on_train_epoch_end(self,
                           epoch_output: List[List[List[Result]]]) -> None:
        # inform logger the batch loop has finished
        self.trainer.logger_connector.on_train_epoch_end()

        # prepare epoch output
        processed_epoch_output = TrainLoop._prepare_outputs(epoch_output,
                                                            batch_mode=False)

        # get the model and call model.training_epoch_end
        model = self.trainer.lightning_module

        if is_overridden('training_epoch_end', model=model):
            # run training_epoch_end
            # refresh the result for custom logging at the epoch level
            model._current_fx_name = 'training_epoch_end'
            training_epoch_end_output = model.training_epoch_end(
                processed_epoch_output)

            if training_epoch_end_output is not None:
                raise MisconfigurationException(
                    'training_epoch_end expects a return of None. '
                    'HINT: remove the return statement in training_epoch_end')

            # capture logging
            self.trainer.logger_connector.cache_logged_metrics()

        # call train epoch end hooks
        self._on_train_epoch_end_hook(processed_epoch_output)
        self.trainer.call_hook('on_epoch_end')

    def _on_train_epoch_end_hook(self, processed_epoch_output) -> None:
        # We cannot rely on Trainer.call_hook because the signatures might be different across
        # lightning module and callback
        # As a result, we need to inspect if the module accepts `outputs` in `on_train_epoch_end`

        # This implementation is copied from Trainer.call_hook
        hook_name = "on_train_epoch_end"

        # set hook_name to model + reset Result obj
        skip = self.trainer._reset_result_and_set_fx_name(hook_name)

        # always profile hooks
        with self.trainer.profiler.profile(hook_name):

            # first call trainer hook
            if hasattr(self.trainer, hook_name):
                trainer_hook = getattr(self.trainer, hook_name)
                trainer_hook(processed_epoch_output)

            # next call hook in lightningModule
            model_ref = self.trainer.lightning_module
            if is_overridden(hook_name, model_ref):
                hook_fx = getattr(model_ref, hook_name)
                if is_param_in_hook_signature(hook_fx, "outputs"):
                    self.warning_cache.warn(
                        "The signature of `ModelHooks.on_train_epoch_end` has changed in v1.3."
                        " `outputs` parameter has been deprecated."
                        " Support for the old signature will be removed in v1.5",
                        DeprecationWarning)
                    model_ref.on_train_epoch_end(processed_epoch_output)
                else:
                    model_ref.on_train_epoch_end()

            # if the PL module doesn't have the hook then call the accelerator
            # used to auto-reduce things for the user with Results obj
            elif hasattr(self.trainer.accelerator, hook_name):
                accelerator_hook = getattr(self.trainer.accelerator, hook_name)
                accelerator_hook()

        if not skip:
            self.trainer._cache_logged_metrics()

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dict = {}

        # bookkeeping
        self._hiddens = None

        optimizers = list(enumerate(self.trainer.optimizers))

        # track all outputs across time and num of optimizers
        batch_outputs = [[] for _ in range(len(optimizers))]

        if batch is None:
            self.warning_cache.warn(
                "train_dataloader yielded None. If this was on purpose, ignore this warning..."
            )
            return AttributeDict(
                signal=0,
                grad_norm_dict={},
                training_step_output_for_epoch_end=batch_outputs,
            )

        # hook
        response = self.trainer.call_hook("on_batch_start")
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dict={})

        # hook
        response = self.trainer.call_hook("on_train_batch_start", batch,
                                          batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dict={})

        # lightning module hook
        splits = self._tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):
            self.split_idx = split_idx

            if self.trainer.lightning_module.automatic_optimization:
                for opt_idx, optimizer in self.get_active_optimizers(
                        batch_idx):
                    result = self._run_optimization(batch_idx, split_idx,
                                                    split_batch, opt_idx,
                                                    optimizer)
                    if result:
                        batch_outputs[opt_idx].append(
                            result.training_step_output_for_epoch_end)
                        grad_norm_dict = result.get("grad_norm_dict", {})
            else:
                # in manual optimization, there is no looping over optimizers
                result = self._run_optimization(batch_idx, split_idx,
                                                split_batch)
                if result:
                    batch_outputs[0].append(
                        result.training_step_output_for_epoch_end)

        output = AttributeDict(
            signal=0,
            # todo: Properly aggregate grad_norm accros opt_idx and split_idx
            grad_norm_dict=grad_norm_dict,
            training_step_output_for_epoch_end=batch_outputs,
        )
        return output

    def _run_optimization(self,
                          batch_idx,
                          split_idx,
                          split_batch,
                          opt_idx=0,
                          optimizer=None):
        # TODO: In v1.5, when optimizer_idx gets removed from training_step in manual_optimization, change
        #   opt_idx=0 to opt_idx=None in the signature here

        # toggle model params + set info to logger_connector
        self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer)

        result = AttributeDict()
        closure = self.make_closure(split_batch, batch_idx, opt_idx, optimizer,
                                    self._hiddens, result)

        if self.should_accumulate():
            # For gradient accumulation

            # -------------------
            # calculate loss (train step + train step end)
            # -------------------

            # automatic_optimization=True: perform ddp sync only when performing optimizer_step
            # automatic_optimization=False: don't block synchronization here
            with self.block_ddp_sync_behaviour():
                closure()

        # ------------------------------
        # BACKWARD PASS
        # ------------------------------
        # gradient update with accumulated gradients
        else:
            if self.trainer.lightning_module.automatic_optimization:
                self.optimizer_step(optimizer, opt_idx, batch_idx, closure)
            else:
                result = self.training_step(split_batch, batch_idx, opt_idx,
                                            self._hiddens)

            if not result:
                # user decided to skip optimization
                return result

            # update running loss + reset accumulated loss
            self.update_running_loss(result.loss)

        self._process_closure_result(result)
        return result

    def training_step_and_backward_closure(
        self,
        split_batch: Any,
        batch_idx: int,
        opt_idx: int,
        optimizer: Optimizer,
        hiddens,
        return_result: AttributeDict,
    ) -> Optional[torch.Tensor]:

        step_result = self.training_step_and_backward(split_batch, batch_idx,
                                                      opt_idx, optimizer,
                                                      hiddens)
        if step_result is not None:
            return_result.update(step_result)
            return return_result.loss

    def make_closure(self, *closure_args, **closure_kwargs: Any) -> Callable:
        """ Wraps the training step closure into a partial object which will be called within ``optimizer.step``. """
        partial_func = partial(self.training_step_and_backward_closure,
                               *closure_args, **closure_kwargs)
        return update_wrapper(partial_func,
                              self.training_step_and_backward_closure)

    @contextmanager
    def block_ddp_sync_behaviour(self, should_block_sync: bool = False):
        """
        automatic_optimization = True
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        automatic_optimization = False
        do not block ddp gradient sync when using manual optimization
        as gradients are needed within the training step

        Returns:
            context manager with sync behaviour off

        """
        if (isinstance(self.trainer.training_type_plugin, ParallelPlugin)
                and (self.trainer.lightning_module.automatic_optimization
                     or should_block_sync)):
            with self.trainer.training_type_plugin.block_backward_sync():
                yield None
        else:
            yield None

    def _process_closure_result(
            self, opt_closure_result: Optional[AttributeDict]) -> None:
        if not opt_closure_result:
            return

        # cache metrics
        self.trainer.logger_connector.cache_training_step_metrics(
            opt_closure_result)

        # check if loss or model weights are nan
        if self.trainer.terminate_on_nan:
            self._check_finite(opt_closure_result.loss)

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx,
                                   optimizer, hiddens):
        """Wrap forward, zero_grad and backward in a closure so second order methods work"""
        with self.trainer.profiler.profile("training_step_and_backward"):
            # lightning module hook
            result = self.training_step(split_batch, batch_idx, opt_idx,
                                        hiddens)

            if not self._skip_backward and self.trainer.lightning_module.automatic_optimization:
                is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0

                if is_first_batch_to_accumulate:
                    self.on_before_zero_grad(optimizer)
                    self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)

                # backward pass
                if result is not None:
                    with self.trainer.profiler.profile("backward"):
                        self.backward(result, optimizer, opt_idx)

                    # hook - call this hook only
                    # when gradients have finished to accumulate
                    if not self.should_accumulate():
                        self.on_after_backward(result.training_step_output,
                                               batch_idx, result.loss)

                    # check if loss or model weights are nan
                    if self.trainer.terminate_on_nan:
                        self._check_finite(result.loss)

                else:
                    self.warning_cache.warn(
                        "training_step returned None. If this was on purpose, ignore this warning..."
                    )

                if len(self.trainer.optimizers) > 1:
                    # revert back to previous state
                    self.trainer.lightning_module.untoggle_optimizer(opt_idx)

        return result

    def _check_finite(self, loss: torch.Tensor) -> None:
        if not torch.isfinite(loss).all():
            raise ValueError(
                f'The loss returned in `training_step` is {loss}.')
        model = self.trainer.lightning_module
        detect_nan_parameters(model)

    def backward(self, result, optimizer, opt_idx, *args, **kwargs):
        self.trainer.dev_debugger.track_event("backward_call")

        should_accumulate = self.should_accumulate()

        # backward can be called manually in the training loop
        if isinstance(result, torch.Tensor):
            self.trainer.accelerator.backward(result, optimizer, opt_idx,
                                              should_accumulate, *args,
                                              **kwargs)
        else:
            result.closure_loss = self.trainer.accelerator.backward(
                result.closure_loss, optimizer, opt_idx, should_accumulate,
                *args, **kwargs)

        if not self.should_accumulate():
            # track gradients
            result.grad_norm_dict = self.track_and_norm_grad(
                optimizer=optimizer)

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        if num_accumulated_batches_reached or num_training_batches_reached:
            # update lr
            self.trainer.optimizer_connector.update_learning_rates(
                interval="step",
                monitor_metrics=monitor_metrics,
                opt_indices=[
                    opt_idx for opt_idx, _ in self.get_active_optimizers()
                ],
            )

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.global_step = self.trainer.accelerator.update_global_step(
                self.total_batch_idx, self.global_step)

    def _accumulated_batches_reached(self):
        return (self.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0

    def _num_training_batches_reached(self, is_last_batch=False):
        return (self.batch_idx +
                1) == self.trainer.num_training_batches or is_last_batch

    def should_accumulate(self):
        # checks if backward or backward + optimizer step (via closure)
        accumulation_done = self._accumulated_batches_reached()
        is_final_batch = self._num_training_batches_reached()
        return not (accumulation_done or is_final_batch)

    def _should_check_val_fx(self,
                             batch_idx: int,
                             is_last_batch: bool,
                             on_epoch: bool = False) -> bool:
        """ Decide if we should run validation. """

        if not self.trainer.enable_validation:
            return False

        # check if this epoch is eligible to run validation
        if (self.trainer.current_epoch +
                1) % self.trainer.check_val_every_n_epoch != 0:
            return False

        # val_check_batch is inf for iterable datasets with no length defined
        # TODO: let training/eval loop handle logic around limit_*_batches and val_check_batch
        is_val_check_batch = False
        if isinstance(self.trainer.limit_train_batches,
                      int) and self.trainer.val_check_batch == float('inf'):
            is_val_check_batch = (batch_idx +
                                  1) % self.trainer.limit_train_batches == 0
        elif self.trainer.val_check_batch != float('inf'):
            is_val_check_batch = (batch_idx +
                                  1) % self.trainer.val_check_batch == 0

        # Note: num_training_batches is also inf for iterable datasets with no length defined
        epoch_end_val_check = (batch_idx +
                               1) % self.trainer.num_training_batches == 0
        is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float(
            "inf")

        if on_epoch:
            return (
                is_val_check_batch and epoch_end_val_check
            ) or self.trainer.should_stop or is_last_batch_for_infinite_dataset
        else:
            return is_val_check_batch and not epoch_end_val_check

    def _build_kwargs(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        step_kwargs = OrderedDict([('batch', batch), ('batch_idx', batch_idx)])

        lightning_module = self.trainer.lightning_module

        if len(self.trainer.optimizers) > 1:
            training_step_fx = getattr(lightning_module, "training_step")
            has_opt_idx_in_train_step = is_param_in_hook_signature(
                training_step_fx, "optimizer_idx")
            if has_opt_idx_in_train_step:
                if not lightning_module.automatic_optimization:
                    self.warning_cache.warn(
                        "`training_step` hook signature has changed in v1.3."
                        " `optimizer_idx` argument has been removed in case of manual optimization. Support for"
                        " the old signature will be removed in v1.5",
                        DeprecationWarning)
                step_kwargs['optimizer_idx'] = opt_idx
            elif not has_opt_idx_in_train_step and self.trainer.lightning_module.automatic_optimization:
                raise ValueError(
                    f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but"
                    ' `training_step` is missing the `optimizer_idx` argument.'
                )

        # pass hiddens if using tbptt
        if self._truncated_bptt_enabled():
            step_kwargs['hiddens'] = hiddens

        return step_kwargs

    def _truncated_bptt_enabled(self) -> bool:
        """ Temporary tbptt utilities until this flag is fully migrated to the lightning module. """
        return self._truncated_bptt_steps() > 0

    def _truncated_bptt_steps(self) -> int:
        lightning_module = self.trainer.lightning_module
        # Give precedence to the LightningModule as the Trainer flag will be removed in v1.5
        if lightning_module.truncated_bptt_steps > 0:
            return lightning_module.truncated_bptt_steps
        return self.trainer.truncated_bptt_steps or 0

    def save_loggers_on_train_batch_end(self):
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
            self.trainer.logger.save()

    def run_train_split_start(self, split_idx, split_batch, opt_idx,
                              optimizer):
        # make sure only the gradients of the current optimizer's parameters are calculated
        # in the training step to prevent dangling gradients in multiple-optimizer setup.
        if self.trainer.lightning_module.automatic_optimization and len(
                self.trainer.optimizers) > 1:
            model = self.trainer.lightning_module
            model.toggle_optimizer(optimizer, opt_idx)

        # use to track metrics internally
        self.trainer.logger_connector.on_train_split_start(
            split_idx, opt_idx, split_batch)

    def update_running_loss(self, current_loss: torch.Tensor) -> None:
        if self.trainer.lightning_module.automatic_optimization:
            # track total loss for logging (avoid mem leaks)
            self.accumulated_loss.append(current_loss)

        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() *
                                     self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
예제 #23
0
    def train(self):
        self.run_sanity_check(self.get_model())

        # enable train mode
        model = self.get_model()
        model.train()
        torch.set_grad_enabled(True)

        # reload data when needed
        self.train_loop.reset_train_val_dataloaders(model)

        # hook
        self.train_loop.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod or self.on_tpu) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(
                    self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches)

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps <= self.global_step:

                    # hook
                    self.train_loop.on_train_end()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                if self.should_stop:
                    if (met_min_epochs and met_min_steps):
                        self.train_loop.on_train_end()
                        return
                    else:
                        log.info(
                            'Trainer was signaled to stop but required minimum epochs'
                            f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
                            ' not been met. Training will continue...')

            # hook
            self.train_loop.on_train_end()

        except KeyboardInterrupt:
            rank_zero_warn(
                'Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True
                self._state = TrainerState.INTERRUPTED
                self.on_keyboard_interrupt()

                # hook
                self.train_loop.on_train_end()
예제 #24
0
    def train(self):
        # add signal handlers for process kills
        # def _signal_kill_handler(*args):
        #     return TrainerTrainLoopMixin.run_training_teardown(self)
        #
        # orig_signal_handlers = {}
        # for sig_name in SIGNAL_TERMINATE:
        #     orig_signal_handlers[sig_name] = signal.signal(getattr(signal, sig_name),
        #                                                    _signal_kill_handler)

        # get model
        model = self.get_model()

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)
        self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # initialize early stop callback
            if self.early_stop_callback is not None:
                self.early_stop_callback.on_train_start(self, self.get_model())
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(
                    self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches)

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps == self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                # TODO wrap this logic into the callback
                if self.enable_early_stop:
                    if (met_min_epochs and met_min_steps) or self.fast_dev_run:
                        should_stop = self.early_stop_callback.on_validation_end(
                            self, self.get_model())
                        # stop training
                        stop = should_stop and met_min_epochs
                        if stop:
                            self.run_training_teardown()
                            return

            self.run_training_teardown()

        except KeyboardInterrupt:
            rank_zero_warn(
                'Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True

                for proc in self.interactive_ddp_procs:
                    subprocess.Popen.kill(proc)

                self.run_training_teardown()
예제 #25
0
class TrainerTrainLoopMixin(ABC):
    # this is just a summary on variables used in this abstract class,
    #  the proper values/initialisation should be done in child class
    max_epochs: int
    min_epochs: int
    on_gpu: bool
    use_ddp: bool
    use_dp: bool
    use_ddp2: bool
    use_horovod: bool
    single_gpu: bool
    use_tpu: bool
    data_parallel_device_ids:...
    check_val_every_n_epoch:...
    num_training_batches: int
    val_check_batch:...
    num_val_batches: int
    disable_validation: bool
    fast_dev_run:...
    accumulation_scheduler:...
    lr_schedulers:...
    enable_early_stop:...
    early_stop_callback:...
    callback_metrics:...
    logger: Union[LightningLoggerBase, bool]
    global_step: int
    testing: bool
    log_save_interval: float
    proc_rank: int
    row_log_interval: float
    truncated_bptt_steps:...
    optimizers:...
    optimizer_frequencies:...
    accumulate_grad_batches: int
    track_grad_norm:...
    model: LightningModule
    interrupted: bool
    running_loss:...
    progress_bar_dict:...
    reduce_lr_on_plateau_scheduler:...
    profiler:...
    batch_idx: int
    precision:...
    train_dataloader: DataLoader
    reload_dataloaders_every_epoch: bool
    max_steps: int
    min_steps: int
    total_batch_idx: int
    checkpoint_callback:...
    terminate_on_nan: bool
    tpu_id: int

    # Callback system
    callbacks: List[Callback]
    on_train_start: Callable
    on_train_end: Callable
    on_batch_start: Callable
    on_batch_end: Callable
    on_epoch_start: Callable
    on_epoch_end: Callable
    on_validation_end: Callable

    @abstractmethod
    def get_model(self):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def is_function_implemented(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def run_evaluation(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def transfer_batch_to_gpu(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def transfer_batch_to_tpu(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def clip_gradients(self):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def detect_nan_tensors(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def is_overridden(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def add_progress_bar_metrics(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def log_metrics(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def process_output(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def reset_train_dataloader(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def reset_val_dataloader(self, model):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def has_arg(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    def train(self):
        # add signal handlers for process kills
        # def _signal_kill_handler(*args):
        #     return TrainerTrainLoopMixin.run_training_teardown(self)
        #
        # orig_signal_handlers = {}
        # for sig_name in SIGNAL_TERMINATE:
        #     orig_signal_handlers[sig_name] = signal.signal(getattr(signal, sig_name),
        #                                                    _signal_kill_handler)

        # get model
        model = self.get_model()

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)
        self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # initialize early stop callback
            if self.early_stop_callback is not None:
                self.early_stop_callback.on_train_start(self, self.get_model())
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(
                    self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches)

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps == self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                # TODO wrap this logic into the callback
                if self.enable_early_stop:
                    if (met_min_epochs and met_min_steps) or self.fast_dev_run:
                        should_stop = self.early_stop_callback.on_validation_end(
                            self, self.get_model())
                        # stop training
                        stop = should_stop and met_min_epochs
                        if stop:
                            self.run_training_teardown()
                            return

            self.run_training_teardown()

        except KeyboardInterrupt:
            rank_zero_warn(
                'Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True

                for proc in self.interactive_ddp_procs:
                    subprocess.Popen.kill(proc)

                self.run_training_teardown()

    def run_training_epoch(self):

        # get model
        model = self.get_model()

        # Epoch start events
        with self.profiler.profile('on_epoch_start'):
            # callbacks
            self.on_epoch_start()

            # model hooks
            if self.is_function_implemented('on_epoch_start'):
                model.on_epoch_start()

        # track local dataloader so TPU can wrap each epoch
        train_dataloader = self.train_dataloader

        # on TPU we have to wrap it under the ParallelLoader
        if self.use_tpu:
            device = xm.xla_device(self.tpu_id)
            train_dataloader = xla_pl.ParallelLoader(train_dataloader,
                                                     [device])
            train_dataloader = train_dataloader.per_device_loader(device)

        # bookkeeping
        outputs = []

        # run epoch
        for batch_idx, (batch,
                        is_last_batch) in self.profiler.profile_iterable(
                            enumerate(_with_is_last(train_dataloader)),
                            "get_train_batch"):
            # stop epoch if we limited the number of training batches
            if batch_idx >= self.num_training_batches:
                break

            self.batch_idx = batch_idx

            model.global_step = self.global_step

            # ---------------
            # RUN TRAIN STEP
            # ---------------
            _outputs = self.run_training_batch(batch, batch_idx)
            batch_result, grad_norm_dic, batch_step_metrics, batch_output = _outputs

            # only track outputs when user implements training_epoch_end
            # otherwise we will build up unnecessary memory
            if self.is_overridden('training_epoch_end',
                                  model=self.get_model()):
                outputs.append(batch_output)

            # when returning -1 from train_step, we end epoch early
            early_stop_epoch = batch_result == -1

            # TODO: consolidate all actions that need to take place only after
            # self.accumulate_grad_batches steps (optimizer step, lr update, global step increment)
            if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
                # update lr
                self.update_learning_rates(interval='step')

            # ---------------
            # RUN VAL STEP
            # ---------------
            is_val_check_batch = (batch_idx + 1) % self.val_check_batch == 0
            can_check_epoch = (self.current_epoch +
                               1) % self.check_val_every_n_epoch == 0
            can_check_val = not self.disable_validation and can_check_epoch
            should_check_val = is_val_check_batch or early_stop_epoch
            should_check_val = should_check_val or (
                is_last_batch and self.val_check_batch == float('inf'))
            should_check_val = can_check_val and should_check_val

            # ---------------
            # CHECKPOINTING, EARLY STOPPING
            # ---------------
            # fast_dev_run always forces val checking after train batch
            if self.fast_dev_run or should_check_val:
                self.run_evaluation(test_mode=self.testing)
                self.call_checkpoint_callback()

            # when logs should be saved
            should_save_log = (
                batch_idx +
                1) % self.log_save_interval == 0 or early_stop_epoch
            if should_save_log or self.fast_dev_run:
                if self.proc_rank == 0 and self.logger is not None:
                    self.logger.save()

            # when metrics should be logged
            should_log_metrics = batch_idx % self.row_log_interval == 0 or early_stop_epoch
            if should_log_metrics or self.fast_dev_run:
                # logs user requested information to logger
                self.log_metrics(batch_step_metrics, grad_norm_dic)

            # progress global step according to grads progress
            if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
                self.global_step += 1
            self.total_batch_idx += 1

            # max steps reached, end training
            if self.max_steps is not None and self.max_steps == self.global_step:
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if early_stop_epoch or self.fast_dev_run:
                break

        if self.use_horovod:
            hvd.join(hvd.local_rank() if self.on_gpu else -1)

        # process epoch outputs
        model = self.get_model()
        if self.is_overridden('training_epoch_end', model=model):
            epoch_output = model.training_epoch_end(outputs)
            _processed_outputs = self.process_output(epoch_output)
            log_epoch_metrics = _processed_outputs[2]
            callback_epoch_metrics = _processed_outputs[3]
            self.log_metrics(log_epoch_metrics, {})
            self.callback_metrics.update(callback_epoch_metrics)
            self.add_progress_bar_metrics(_processed_outputs[1])

        # when no val loop is present or fast-dev-run still need to call checkpoints
        if not self.is_overridden('validation_step') and not (
                self.fast_dev_run or should_check_val):
            self.call_checkpoint_callback()

        # Epoch end events
        with self.profiler.profile('on_epoch_end'):
            # callbacks
            self.on_epoch_end()
            # model hooks
            if self.is_function_implemented('on_epoch_end'):
                model.on_epoch_end()

    def run_training_batch(self, batch, batch_idx):
        # track grad norms
        grad_norm_dic = {}

        # track all metrics for callbacks
        all_callback_metrics = []

        # track metrics to log
        all_log_metrics = []

        if batch is None:
            return 0, grad_norm_dic, {}, {}

        # Batch start events
        with self.profiler.profile('on_batch_start'):
            # callbacks
            self.on_batch_start()
            # hooks
            if self.is_function_implemented('on_batch_start'):
                response = self.get_model().on_batch_start(batch)
                if response == -1:
                    return -1, grad_norm_dic, {}, {}

        splits = [batch]
        if self.truncated_bptt_steps is not None:
            model_ref = self.get_model()
            with self.profiler.profile('tbptt_split_batch'):
                splits = model_ref.tbptt_split_batch(batch,
                                                     self.truncated_bptt_steps)

        self.hiddens = None
        for split_idx, split_batch in enumerate(splits):
            self.split_idx = split_idx

            for opt_idx, optimizer in self._get_optimizers_iterable():
                # make sure only the gradients of the current optimizer's parameters are calculated
                # in the training step to prevent dangling gradients in multiple-optimizer setup.
                if len(self.optimizers) > 1:
                    for param in self.get_model().parameters():
                        param.requires_grad = False
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.requires_grad = True

                # wrap the forward step in a closure so second order methods work
                def optimizer_closure():
                    # forward pass
                    with self.profiler.profile('model_forward'):
                        if self.use_amp and self.use_native_amp:
                            with torch.cuda.amp.autocast():
                                output_dict = self.training_forward(
                                    split_batch, batch_idx, opt_idx,
                                    self.hiddens)
                        else:
                            output_dict = self.training_forward(
                                split_batch, batch_idx, opt_idx, self.hiddens)

                        # format and reduce outputs accordingly
                        processed_output = self.process_output(output_dict,
                                                               train=True)

                    closure_loss, progress_bar_metrics, log_metrics, callback_metrics, self.hiddens = processed_output

                    # accumulate loss
                    # (if accumulate_grad_batches = 1 no effect)
                    closure_loss = closure_loss / self.accumulate_grad_batches

                    # backward pass
                    model_ref = self.get_model()
                    with self.profiler.profile('model_backward'):
                        model_ref.backward(self, closure_loss, optimizer,
                                           opt_idx)

                    # track metrics for callbacks
                    all_callback_metrics.append(callback_metrics)

                    # track progress bar metrics
                    self.add_progress_bar_metrics(progress_bar_metrics)
                    all_log_metrics.append(log_metrics)

                    if self.use_horovod:
                        # Synchronize Horovod to ensure gradient manipulations (e.g., loss scaling) are valid
                        optimizer.synchronize()

                    # insert after step hook
                    if self.is_function_implemented('on_after_backward'):
                        model_ref = self.get_model()
                        with self.profiler.profile('on_after_backward'):
                            model_ref.on_after_backward()

                    return closure_loss, callback_metrics

                # calculate loss
                loss, batch_output = optimizer_closure()

                # check if loss or model weights are nan
                if self.terminate_on_nan:
                    self.detect_nan_tensors(loss)

                # track total loss for logging (avoid mem leaks)
                self.batch_loss_value.append(loss)

                # gradient update with accumulated gradients
                if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:

                    # track gradient norms when requested
                    if batch_idx % self.row_log_interval == 0:
                        if float(self.track_grad_norm) > 0:
                            model = self.get_model()
                            grad_norm_dic = model.grad_norm(
                                self.track_grad_norm)

                    # clip gradients
                    if self.use_amp and self.use_native_amp:
                        self.scaler.unscale_(optimizer)
                    self.clip_gradients()

                    # calls .step(), .zero_grad()
                    # override function to modify this behavior
                    model = self.get_model()
                    with self.profiler.profile('optimizer_step'):
                        model.optimizer_step(self.current_epoch, batch_idx,
                                             optimizer, opt_idx,
                                             lambda: optimizer_closure()[0])

                    # calculate running loss for display
                    self.running_loss.append(self.batch_loss_value.mean())

                    # reset for next set of accumulated grads
                    self.batch_loss_value.reset()

        # Batch end events
        with self.profiler.profile('on_batch_end'):
            # callbacks
            self.on_batch_end()
            # model hooks
            if self.is_function_implemented('on_batch_end'):
                self.get_model().on_batch_end()

        # collapse all metrics into one dict
        all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()}

        # track all metrics for callbacks
        self.callback_metrics.update(
            {k: v
             for d in all_callback_metrics for k, v in d.items()})

        return 0, grad_norm_dic, all_log_metrics, batch_output

    def _get_optimizers_iterable(self):
        if not self.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [(opt_idx, self.optimizers[opt_idx])]

    # @atexit.register
    def run_training_teardown(self):
        if hasattr(self,
                   '_teardown_already_run') and self._teardown_already_run:
            return
        # Train end events
        with self.profiler.profile('on_train_end'):
            # callbacks
            self.on_train_end()
            # model hooks
            if self.is_function_implemented('on_train_end'):
                self.get_model().on_train_end()

        if self.logger is not None:
            self.logger.finalize("success")

        # summarize profile results
        self.profiler.describe()

        self._teardown_already_run = True

    def training_forward(self, batch, batch_idx, opt_idx, hiddens):
        """
        Handle forward for each training case (distributed, single gpu, etc...)
        :param batch:
        :param batch_idx:
        :return:
        """
        # ---------------
        # FORWARD
        # ---------------
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.optimizers) > 1:
            if self.has_arg('training_step', 'optimizer_idx'):
                args.append(opt_idx)
            else:
                num_opts = len(self.optimizers)
                raise ValueError(
                    f'Your LightningModule defines {num_opts} optimizers but '
                    f'training_step is missing the "optimizer_idx" argument.')

        # pass hiddens if using tbptt
        if self.truncated_bptt_steps is not None:
            args.append(hiddens)

        # distributed forward
        if self.use_ddp or self.use_ddp2 or self.use_dp:
            output = self.model(*args)

        # Horovod
        elif self.use_horovod and self.on_gpu:
            batch = self.transfer_batch_to_gpu(batch, hvd.local_rank())
            args[0] = batch
            output = self.model.training_step(*args)

        # single GPU forward
        elif self.single_gpu:
            gpu_id = 0
            if isinstance(self.data_parallel_device_ids, list):
                gpu_id = self.data_parallel_device_ids[0]

            # Don't copy the batch since there is a single gpu that the batch could
            # be referenced from and if there are multiple optimizers the batch will
            # wind up copying it to the same device repeatedly.
            batch = self.transfer_batch_to_gpu(batch, gpu_id)
            args[0] = batch
            output = self.model.training_step(*args)

        # TPU support
        elif self.use_tpu:
            batch = self.transfer_batch_to_tpu(batch, self.tpu_id)
            args[0] = batch
            output = self.model.training_step(*args)

        # CPU forward
        else:
            output = self.model.training_step(*args)

        # allow any mode to define training_step_end
        # do something will all the dp outputs (like softmax)
        if self.is_overridden('training_step_end'):
            model_ref = self.get_model()
            with self.profiler.profile('training_step_end'):
                output = model_ref.training_step_end(output)

        # allow any mode to define training_end
        # TODO: remove in 1.0.0
        if self.is_overridden('training_end'):
            model_ref = self.get_model()
            with self.profiler.profile('training_end'):
                output = model_ref.training_end(output)

            rank_zero_warn(
                '`training_end` was deprecated in 0.7.0 and will be removed 1.0.0.'
                ' Use training_epoch_end instead', DeprecationWarning)

        return output

    def update_learning_rates(self, interval: str):
        """Update learning rates.

        Args:
            interval: either 'epoch' or 'step'.
        """
        if not self.lr_schedulers:
            return

        for lr_scheduler in self.lr_schedulers:
            current_idx = self.batch_idx if interval == 'step' else self.current_epoch
            current_idx += 1  # account for both batch and epoch starts from 0
            # Take step if call to update_learning_rates matches the interval key and
            # the current step modulo the schedulers frequency is zero
            if lr_scheduler[
                    'interval'] == interval and current_idx % lr_scheduler[
                        'frequency'] == 0:
                # If instance of ReduceLROnPlateau, we need to pass validation loss
                if lr_scheduler['reduce_on_plateau']:
                    monitor_key = lr_scheduler['monitor']
                    monitor_val = self.callback_metrics.get(monitor_key)
                    if monitor_val is None:
                        avail_metrics = ','.join(
                            list(self.callback_metrics.keys()))
                        raise MisconfigurationException(
                            f'ReduceLROnPlateau conditioned on metric {monitor_key}'
                            f' which is not available. Available metrics are: {avail_metrics}.'
                            ' Condition can be set using `monitor` key in lr scheduler dict'
                        )
                    lr_scheduler['scheduler'].step(monitor_val)
                else:
                    lr_scheduler['scheduler'].step()

    def call_checkpoint_callback(self):
        if self.checkpoint_callback is not None:
            self.checkpoint_callback.on_validation_end(self, self.get_model())
예제 #26
0
    def __init__(
            self,
            logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase],
                          bool] = True,
            checkpoint_callback: Union[ModelCheckpoint, bool] = True,
            early_stop_callback: Optional[Union[EarlyStopping, bool]] = False,
            callbacks: Optional[List[Callback]] = None,
            default_root_dir: Optional[str] = None,
            gradient_clip_val: float = 0,
            process_position: int = 0,
            num_nodes: int = 1,
            num_processes: int = 1,
            gpus: Optional[Union[List[int], str, int]] = None,
            auto_select_gpus: bool = False,
            tpu_cores: Optional[Union[List[int], int]] = None,
            log_gpu_memory: Optional[str] = None,
            progress_bar_refresh_rate: int = 1,
            overfit_pct: float = 0.0,
            track_grad_norm: int = -1,
            check_val_every_n_epoch: int = 1,
            fast_dev_run: bool = False,
            accumulate_grad_batches: Union[int, Dict[int, int],
                                           List[list]] = 1,
            max_epochs: int = 1000,
            min_epochs: int = 1,
            max_steps: Optional[int] = None,
            min_steps: Optional[int] = None,
            train_percent_check: float = 1.0,
            val_percent_check: float = 1.0,
            test_percent_check: float = 1.0,
            val_check_interval: float = 1.0,
            log_save_interval: int = 100,
            row_log_interval: int = 10,
            add_row_log_interval=None,  # backward compatible, todo: remove in v0.8.0
            distributed_backend: Optional[str] = None,
            precision: int = 32,
            print_nan_grads:
        bool = False,  # backward compatible, todo: remove in v0.9.0
            weights_summary: Optional[str] = 'full',
            weights_save_path: Optional[str] = None,
            num_sanity_val_steps: int = 2,
            truncated_bptt_steps: Optional[int] = None,
            resume_from_checkpoint: Optional[str] = None,
            profiler: Optional[Union[BaseProfiler, bool]] = None,
            benchmark: bool = False,
            deterministic: bool = False,
            reload_dataloaders_every_epoch: bool = False,
            auto_lr_find: Union[bool, str] = False,
            replace_sampler_ddp: bool = True,
            terminate_on_nan: bool = False,
            auto_scale_batch_size: Union[str, bool] = False,
            num_tpu_cores: Optional[
                int] = None,  # backward compatible, todo: remove in v0.9.0
            amp_level: str = 'O1',  # backward compatible, todo: remove in v0.8.0
            default_save_path=None,  # backward compatible, todo: remove in v0.8.0
            gradient_clip=None,  # backward compatible, todo: remove in v0.8.0
            nb_gpu_nodes=None,  # backward compatible, todo: remove in v0.8.0
            max_nb_epochs=None,  # backward compatible, todo: remove in v0.8.0
            min_nb_epochs=None,  # backward compatible, todo: remove in v0.8.0
            use_amp=None,  # backward compatible, todo: remove in v0.9.0
            show_progress_bar=None,  # backward compatible, todo: remove in v0.9.0
            nb_sanity_val_steps=None,  # backward compatible, todo: remove in v0.8.0
    ):
        r"""

        Customize every aspect of training via flags

        Args:
            logger: Logger (or iterable collection of loggers) for experiment tracking.

            checkpoint_callback: Callback for checkpointing.

            early_stop_callback (:class:`pytorch_lightning.callbacks.EarlyStopping`):

            callbacks: Add a list of callbacks.

            default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed

            default_save_path:
                .. warning:: .. deprecated:: 0.7.3

                    Use `default_root_dir` instead. Will remove 0.9.0.

            gradient_clip_val: 0 means don't clip.

            gradient_clip:
                .. warning:: .. deprecated:: 0.7.0

                    Use `gradient_clip_val` instead. Will remove 0.9.0.

            process_position: orders the progress bar when running multiple models on same machine.

            num_nodes: number of GPU nodes for distributed training.

            nb_gpu_nodes:
                .. warning:: .. deprecated:: 0.7.0

                    Use `num_nodes` instead. Will remove 0.9.0.

            gpus: Which GPUs to train on.

            auto_select_gpus:

                If enabled and `gpus` is an integer, pick available
                gpus automatically. This is especially useful when
                GPUs are configured to be in "exclusive mode", such
                that only one process at a time can access them.

            tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on [1]

            num_tpu_cores: How many TPU cores to train on (1 or 8)
                .. warning:: .. deprecated:: 0.7.6. Will remove 0.9.0.

            log_gpu_memory: None, 'min_max', 'all'. Might slow performance

            show_progress_bar:
                .. warning:: .. deprecated:: 0.7.2

                        Set `progress_bar_refresh_rate` to positive integer to enable. Will remove 0.9.0.

            progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar.
                Ignored when a custom callback is passed to :paramref:`~Trainer.callbacks`.

            overfit_pct: How much of training-, validation-, and test dataset to check.

            track_grad_norm: -1 no tracking. Otherwise tracks that norm

            check_val_every_n_epoch: Check val every n train epochs.

            fast_dev_run: runs 1 batch of train, test  and val to find any bugs (ie: a sort of unit test).

            accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.

            max_epochs: Stop training once this number of epochs is reached.

            max_nb_epochs:
                .. warning:: .. deprecated:: 0.7.0

                    Use `max_epochs` instead. Will remove 0.9.0.

            min_epochs: Force training for at least these many epochs

            min_nb_epochs:
                .. warning:: .. deprecated:: 0.7.0

                    Use `min_epochs` instead. Will remove 0.9.0.

            max_steps: Stop training after this number of steps. Disabled by default (None).

            min_steps: Force training for at least these number of steps. Disabled by default (None).

            train_percent_check: How much of training dataset to check.

            val_percent_check: How much of validation dataset to check.

            test_percent_check: How much of test dataset to check.

            val_check_interval: How often within one training epoch to check the validation set

            log_save_interval: Writes logs to disk this often

            row_log_interval: How often to add logging rows (does not write to disk)

            add_row_log_interval:
                .. warning:: .. deprecated:: 0.7.0

                    Use `row_log_interval` instead. Will remove 0.9.0.

            distributed_backend: The distributed backend to use.

            use_amp:
                .. warning:: .. deprecated:: 0.7.0

                    Use `precision` instead. Will remove 0.9.0.

            precision: Full precision (32), half precision (16).

            print_nan_grads:
                .. warning:: .. deprecated:: 0.7.2

                    Has no effect. When detected, NaN grads will be printed automatically.
                    Will remove 0.9.0.

            weights_summary: Prints a summary of the weights when training begins.

            weights_save_path: Where to save weights if specified. Will override default_root_dir
                    for checkpoints only. Use this if for whatever reason you need the checkpoints
                    stored in a different place than the logs written in `default_root_dir`.

            amp_level: The optimization level to use (O1, O2, etc...).

            num_sanity_val_steps: Sanity check runs n batches of val before starting the training routine.

            nb_sanity_val_steps:
                .. warning:: .. deprecated:: 0.7.0

                    Use `num_sanity_val_steps` instead. Will remove 0.8.0.

            truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of

            resume_from_checkpoint: To resume training from a specific checkpoint pass in the path here.

            profiler:  To profile individual steps during training and assist in

            reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch

            auto_lr_find: If set to True, will `initially` run a learning rate finder,
                trying to optimize initial learning for faster convergence. Sets learning
                rate in self.lr or self.learning_rate in the LightningModule.
                To use a different key, set a string instead of True with the key name.

            replace_sampler_ddp: Explicitly enables or disables sampler replacement.
                If not specified this will toggled automatically ddp is used

            benchmark: If true enables cudnn.benchmark.

            deterministic: If true enables cudnn.deterministic

            terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the
                end of each training batch, if any of the parameters or the loss are NaN or +/-inf.

            auto_scale_batch_size: If set to True, will `initially` run a batch size
                finder trying to find the largest batch size that fits into memory.
                The result will be stored in self.batch_size in the LightningModule.
                Additionally, can be set to either `power` that estimates the batch size through
                a power search or `binsearch` that estimates the batch size through a binary search.
        """
        super().__init__()

        self.deterministic = deterministic
        torch.backends.cudnn.deterministic = self.deterministic
        if self.deterministic:
            # fixing non-deterministic part of horovod
            # https://github.com/PyTorchLightning/pytorch-lightning/pull/1572/files#r420279383
            os.environ["HOROVOD_FUSION_THRESHOLD"] = str(0)

        # Init callbacks
        self.callbacks = callbacks or []
        self.on_init_start()

        # benchmarking
        self.benchmark = benchmark
        torch.backends.cudnn.benchmark = self.benchmark

        # Transfer params
        self.num_nodes = num_nodes
        # Backward compatibility, TODO: remove in v0.8.0
        if nb_gpu_nodes is not None:
            rank_zero_warn(
                "Argument `nb_gpu_nodes` has renamed to `num_nodes` since v0.5.0"
                " and this method will be removed in v0.8.0",
                DeprecationWarning)
            self.num_gpu_nodes = nb_gpu_nodes
        self.log_gpu_memory = log_gpu_memory

        self.gradient_clip_val = gradient_clip_val
        # Backward compatibility, TODO: remove in v0.8.0
        if gradient_clip is not None:
            rank_zero_warn(
                "Argument `gradient_clip` has renamed to `gradient_clip_val` since v0.5.0"
                " and this method will be removed in v0.8.0",
                DeprecationWarning)
            self.gradient_clip = gradient_clip

        self.check_val_every_n_epoch = check_val_every_n_epoch
        self.track_grad_norm = track_grad_norm
        self.on_gpu = True if (gpus and torch.cuda.is_available()) else False

        # tpu config
        if num_tpu_cores is not None:
            rank_zero_warn(
                "Argument `num_tpu_cores` is now set by `tpu_cores` since v0.7.6"
                " and this argument will be removed in v0.9.0",
                DeprecationWarning)

        if tpu_cores is None:
            tpu_cores = num_tpu_cores
        self.on_tpu = tpu_cores is not None
        self.tpu_cores = tpu_cores
        assert self.tpu_cores in (1, 8, None) or (
            isinstance(self.tpu_cores,
                       (list, tuple, set)) and len(self.tpu_cores)
            == 1), '`tpu_cores` can only be 1, 8 or [<1-8>]'

        self.tpu_id = tpu_cores[0] if isinstance(tpu_cores, list) else None

        if num_processes != 1 and distributed_backend != "ddp_cpu":
            rank_zero_warn(
                "num_processes is only used for distributed_backend=\"ddp_cpu\". Ignoring it."
            )
        self.num_processes = num_processes

        self.weights_summary = weights_summary

        self.max_epochs = max_epochs
        # Backward compatibility, TODO: remove in v0.8.0
        if max_nb_epochs is not None:
            rank_zero_warn(
                "Argument `max_nb_epochs` has renamed to `max_epochs` since v0.5.0"
                " and this method will be removed in v0.8.0",
                DeprecationWarning)
            self.max_nb_epochs = max_nb_epochs

        self.min_epochs = min_epochs
        # Backward compatibility, TODO: remove in v0.8.0
        if min_nb_epochs is not None:
            rank_zero_warn(
                "Argument `min_nb_epochs` has renamed to `min_epochs` since v0.5.0"
                " and this method will be removed in v0.8.0",
                DeprecationWarning)
            self.min_nb_epochs = min_nb_epochs

        self.max_steps = max_steps
        self.min_steps = min_steps

        self.num_sanity_val_steps = num_sanity_val_steps
        # Backward compatibility, TODO: remove in v0.8.0
        if nb_sanity_val_steps is not None:
            rank_zero_warn(
                "Argument `nb_sanity_val_steps` has renamed to "
                "`num_sanity_val_steps` since v0.5.0"
                " and this method will be removed in v0.8.0",
                DeprecationWarning)
            self.nb_sanity_val_steps = nb_sanity_val_steps

        # Backward compatibility, TODO: remove in v0.9.0
        if print_nan_grads:
            rank_zero_warn(
                "Argument `print_nan_grads` has no effect and will be removed in v0.9.0."
                " NaN grads will be printed automatically when detected.",
                DeprecationWarning)

        self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch

        self.auto_lr_find = auto_lr_find
        self.auto_scale_batch_size = auto_scale_batch_size
        self._is_data_prepared = False
        self.replace_sampler_ddp = replace_sampler_ddp

        self.truncated_bptt_steps = truncated_bptt_steps
        self.resume_from_checkpoint = resume_from_checkpoint
        self.terminate_on_nan = terminate_on_nan
        self.shown_warnings = set()

        self.fast_dev_run = fast_dev_run
        if self.fast_dev_run:
            self.num_sanity_val_steps = 0
            self.max_epochs = 1
            log.info('Running in fast_dev_run mode: will run a full train,'
                     ' val and test loop using a single batch')

        # set default save path if user didn't provide one
        self.default_root_dir = default_root_dir

        # Backward compatibility, TODO: remove in v0.8.0
        if default_save_path is not None:
            self.default_root_dir = default_save_path

        if self.default_root_dir is None:
            self.default_root_dir = os.getcwd()

        # training bookeeping
        self.total_batch_idx = 0
        self.running_loss = TensorRunningAccum(window_length=20)
        self.batch_idx = 0
        self.progress_bar_metrics = {}
        self.callback_metrics = {}
        self.num_val_batches = 0
        self.num_training_batches = 0
        self.num_test_batches = 0
        self.train_dataloader = None
        self.test_dataloaders = None
        self.val_dataloaders = None

        # training state
        self.model = None
        self.testing = False
        self.disable_validation = False
        self.lr_schedulers = []
        self.optimizers = None
        self.optimizer_frequencies = []
        self.global_step = 0
        self.current_epoch = 0
        self.interrupted = False

        # configure logger
        self.configure_logger(logger)

        # configure profiler
        if profiler is True:
            profiler = SimpleProfiler()
        self.profiler = profiler or PassThroughProfiler()

        # configure early stop callback
        # creates a default one if none passed in
        self.configure_early_stopping(early_stop_callback)

        # configure checkpoint callback
        self.checkpoint_callback = checkpoint_callback
        self.weights_save_path = weights_save_path

        # accumulated grads
        self.accumulate_grad_batches = accumulate_grad_batches
        self.configure_accumulated_gradients(accumulate_grad_batches)

        # for gpus allow int, string and gpu list
        if auto_select_gpus and isinstance(gpus, int):
            self.gpus = pick_multiple_gpus(gpus)
        else:
            self.gpus = gpus

        self.data_parallel_device_ids = parse_gpu_ids(self.gpus)
        self.root_gpu = determine_root_gpu_device(
            self.data_parallel_device_ids)
        self.root_device = torch.device("cpu")

        # tpu state flags
        self.use_tpu = False
        self.tpu_local_core_rank = None
        self.tpu_global_core_rank = None

        # distributed backend choice
        self.distributed_backend = distributed_backend
        self.set_distributed_mode(distributed_backend)

        # override dist backend when using tpus
        if self.on_tpu:
            self.init_tpu()

        # init flags for SLURM+ddp to work
        self.proc_rank = 0
        self.world_size = 1
        self.configure_slurm_ddp(self.num_nodes)
        self.node_rank = self.determine_ddp_node_rank()

        # nvidia setup
        self.set_nvidia_flags(self.is_slurm_managing_tasks,
                              self.data_parallel_device_ids)

        # backward compatibility
        if show_progress_bar is not None:
            self.show_progress_bar = show_progress_bar

        self._progress_bar_callback = self.configure_progress_bar(
            progress_bar_refresh_rate, process_position)

        # logging
        self.log_save_interval = log_save_interval
        self.val_check_interval = val_check_interval

        # backward compatibility
        if add_row_log_interval is not None:
            rank_zero_warn(
                "`add_row_log_interval` has renamed to `row_log_interval` since v0.5.0"
                " and this method will be removed in v0.8.0",
                DeprecationWarning)
            if not row_log_interval:  # in case you did not set the proper value
                row_log_interval = add_row_log_interval
        self.row_log_interval = row_log_interval

        # how much of the data to use
        self.overfit_pct = overfit_pct
        self.determine_data_use_amount(train_percent_check, val_percent_check,
                                       test_percent_check, overfit_pct)

        # AMP init
        # These are the only lines needed after v0.8.0
        # we wrap the user's forward with autocast and give it back at the end of fit
        self.autocast_original_forward = None
        self.use_native_amp = hasattr(torch.cuda, "amp") and hasattr(
            torch.cuda.amp, "autocast")
        self.precision = precision
        self.scaler = None

        # TODO: remove for v0.8.0
        self.amp_level = amp_level
        self.init_amp(use_amp)

        self.on_colab_kaggle = os.getenv('COLAB_GPU') or os.getenv(
            'KAGGLE_URL_BASE')

        # Callback system
        self.on_init_end()
예제 #27
0
    def __init__(
            self,
            logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True,
            checkpoint_callback: Union[ModelCheckpoint, bool] = True,
            early_stop_callback: Optional[Union[EarlyStopping, bool]] = False,
            callbacks: List[Callback] = [],
            default_root_dir: Optional[str] = None,
            gradient_clip_val: float = 0,
            process_position: int = 0,
            num_nodes: int = 1,
            gpus: Optional[Union[List[int], str, int]] = None,
            auto_select_gpus: bool = False,
            num_tpu_cores: Optional[int] = None,
            log_gpu_memory: Optional[str] = None,
            progress_bar_refresh_rate: int = 1,
            overfit_pct: float = 0.0,
            track_grad_norm: int = -1,
            check_val_every_n_epoch: int = 1,
            fast_dev_run: bool = False,
            accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1,
            max_epochs: int = 1000,
            min_epochs: int = 1,
            max_steps: Optional[int] = None,
            min_steps: Optional[int] = None,
            train_percent_check: float = 1.0,
            val_percent_check: float = 1.0,
            test_percent_check: float = 1.0,
            val_check_interval: float = 1.0,
            log_save_interval: int = 100,
            row_log_interval: int = 10,
            add_row_log_interval=None,  # backward compatible, todo: remove in v0.8.0
            distributed_backend: Optional[str] = None,
            precision: int = 32,
            print_nan_grads: bool = False,  # backward compatible, todo: remove in v0.9.0
            weights_summary: Optional[str] = 'full',
            weights_save_path: Optional[str] = None,
            amp_level: str = 'O1',
            num_sanity_val_steps: int = 5,
            truncated_bptt_steps: Optional[int] = None,
            resume_from_checkpoint: Optional[str] = None,
            profiler: Optional[BaseProfiler] = None,
            benchmark: bool = False,
            reload_dataloaders_every_epoch: bool = False,
            auto_lr_find: Union[bool, str] = False,
            default_save_path=None,  # backward compatible, todo: remove in v0.8.0
            gradient_clip=None,  # backward compatible, todo: remove in v0.8.0
            nb_gpu_nodes=None,  # backward compatible, todo: remove in v0.8.0
            max_nb_epochs=None,  # backward compatible, todo: remove in v0.8.0
            min_nb_epochs=None,  # backward compatible, todo: remove in v0.8.0
            use_amp=None,  # backward compatible, todo: remove in v0.9.0
            show_progress_bar=None,  # backward compatible, todo: remove in v0.9.0
            nb_sanity_val_steps=None,  # backward compatible, todo: remove in v0.8.0
            terminate_on_nan: bool = False,
            **kwargs
    ):
        r"""

        Customize every aspect of training via flags

        Args:
            logger: Logger (or iterable collection of loggers) for experiment tracking.

            checkpoint_callback: Callback for checkpointing.

            early_stop_callback (:class:`pytorch_lightning.callbacks.EarlyStopping`):

            callbacks: Add a list of callbacks.

            default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed

            default_save_path:
                .. warning:: .. deprecated:: 0.7.3

                    Use `default_root_dir` instead. Will remove 0.9.0.

            gradient_clip_val: 0 means don't clip.

            gradient_clip:
                .. warning:: .. deprecated:: 0.7.0

                    Use `gradient_clip_val` instead. Will remove 0.9.0.

            process_position: orders the tqdm bar when running multiple models on same machine.

            num_nodes: number of GPU nodes for distributed training.

            nb_gpu_nodes:
                .. warning:: .. deprecated:: 0.7.0

                    Use `num_nodes` instead. Will remove 0.9.0.

            gpus: Which GPUs to train on.

            auto_select_gpus:

                If enabled and `gpus` is an integer, pick available
                gpus automatically. This is especially useful when
                GPUs are configured to be in "exclusive mode", such
                that only one process at a time can access them.

            num_tpu_cores: How many TPU cores to train on (1 or 8).

            log_gpu_memory: None, 'min_max', 'all'. Might slow performance

            show_progress_bar:
                .. warning:: .. deprecated:: 0.7.2

                        Set `progress_bar_refresh_rate` to postive integer to enable. Will remove 0.9.0.

            progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar.

            overfit_pct: How much of training-, validation-, and test dataset to check.

            track_grad_norm: -1 no tracking. Otherwise tracks that norm

            check_val_every_n_epoch: Check val every n train epochs.

            fast_dev_run: runs 1 batch of train, test  and val to find any bugs (ie: a sort of unit test).

            accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.

            max_epochs: Stop training once this number of epochs is reached.

            max_nb_epochs:
                .. warning:: .. deprecated:: 0.7.0

                    Use `max_epochs` instead. Will remove 0.9.0.

            min_epochs: Force training for at least these many epochs

            min_nb_epochs:
                .. warning:: .. deprecated:: 0.7.0

                    Use `min_epochs` instead. Will remove 0.9.0.

            max_steps: Stop training after this number of steps. Disabled by default (None).

            min_steps: Force training for at least these number of steps. Disabled by default (None).

            train_percent_check: How much of training dataset to check.

            val_percent_check: How much of validation dataset to check.

            test_percent_check: How much of test dataset to check.

            val_check_interval: How often within one training epoch to check the validation set

            log_save_interval: Writes logs to disk this often

            row_log_interval: How often to add logging rows (does not write to disk)

            add_row_log_interval:
                .. warning:: .. deprecated:: 0.7.0

                    Use `row_log_interval` instead. Will remove 0.9.0.

            distributed_backend: The distributed backend to use.

            use_amp:
                .. warning:: .. deprecated:: 0.7.0

                    Use `precision` instead. Will remove 0.9.0.

            precision: Full precision (32), half precision (16).

            print_nan_grads:
                .. warning:: .. deprecated:: 0.7.2

                    Has no effect. When detected, NaN grads will be printed automatically.
                    Will remove 0.9.0.

            weights_summary: Prints a summary of the weights when training begins.

            weights_save_path: Where to save weights if specified. Will override default_root_dir
                    for checkpoints only. Use this if for whatever reason you need the checkpoints
                    stored in a different place than the logs written in `default_root_dir`.

            amp_level: The optimization level to use (O1, O2, etc...).

            num_sanity_val_steps: Sanity check runs n batches of val before starting the training routine.

            nb_sanity_val_steps:
                .. warning:: .. deprecated:: 0.7.0

                    Use `num_sanity_val_steps` instead. Will remove 0.8.0.

            truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of

            resume_from_checkpoint: To resume training from a specific checkpoint pass in the path here.

            profiler:  To profile individual steps during training and assist in

            reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch

            auto_lr_find: If set to True, will `initially` run a learning rate finder,
                trying to optimize initial learning for faster convergence. Sets learning
                rate in self.hparams.lr | self.hparams.learning_rate in the lightning module.
                To use a different key, set a string instead of True with the key name.

            benchmark: If true enables cudnn.benchmark.

            terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the
                end of each training batch, if any of the parameters or the loss are NaN or +/-inf.
        """

        # Init callbacks
        self.callbacks = callbacks
        self.on_init_start()

        # benchmarking
        self.benchmark = benchmark
        torch.backends.cudnn.benchmark = self.benchmark

        # Transfer params
        self.num_nodes = num_nodes
        # Backward compatibility, TODO: remove in v0.8.0
        if nb_gpu_nodes is not None:
            rank_zero_warn("Argument `nb_gpu_nodes` has renamed to `num_nodes` since v0.5.0"
                           " and this method will be removed in v0.8.0", DeprecationWarning)
            self.num_gpu_nodes = nb_gpu_nodes
        self.log_gpu_memory = log_gpu_memory

        self.gradient_clip_val = gradient_clip_val
        # Backward compatibility, TODO: remove in v0.8.0
        if gradient_clip is not None:
            rank_zero_warn("Argument `gradient_clip` has renamed to `gradient_clip_val` since v0.5.0"
                           " and this method will be removed in v0.8.0", DeprecationWarning)
            self.gradient_clip = gradient_clip

        self.progress_bar_refresh_rate = progress_bar_refresh_rate
        self.check_val_every_n_epoch = check_val_every_n_epoch
        self.track_grad_norm = track_grad_norm
        self.on_gpu = True if (gpus and torch.cuda.is_available()) else False

        # tpu config
        self.on_tpu = num_tpu_cores is not None
        self.num_tpu_cores = num_tpu_cores
        assert num_tpu_cores in [1, 8, None], 'num_tpu_cores can only be 1 or 8'

        self.process_position = process_position
        self.weights_summary = weights_summary

        self.max_epochs = max_epochs
        # Backward compatibility, TODO: remove in v0.8.0
        if max_nb_epochs is not None:
            rank_zero_warn("Argument `max_nb_epochs` has renamed to `max_epochs` since v0.5.0"
                           " and this method will be removed in v0.8.0", DeprecationWarning)
            self.max_nb_epochs = max_nb_epochs

        self.min_epochs = min_epochs
        # Backward compatibility, TODO: remove in v0.8.0
        if min_nb_epochs is not None:
            rank_zero_warn("Argument `min_nb_epochs` has renamed to `min_epochs` since v0.5.0"
                           " and this method will be removed in v0.8.0", DeprecationWarning)
            self.min_nb_epochs = min_nb_epochs

        self.max_steps = max_steps
        self.min_steps = min_steps

        self.num_sanity_val_steps = num_sanity_val_steps
        # Backward compatibility, TODO: remove in v0.8.0
        if nb_sanity_val_steps is not None:
            rank_zero_warn("Argument `nb_sanity_val_steps` has renamed to "
                           "`num_sanity_val_steps` since v0.5.0"
                           " and this method will be removed in v0.8.0", DeprecationWarning)
            self.nb_sanity_val_steps = nb_sanity_val_steps

        # Backward compatibility, TODO: remove in v0.9.0
        if print_nan_grads:
            rank_zero_warn("Argument `print_nan_grads` has no effect and will be removed in v0.9.0."
                           " NaN grads will be printed automatically when detected.", DeprecationWarning)

        self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch

        self.auto_lr_find = auto_lr_find

        self.truncated_bptt_steps = truncated_bptt_steps
        self.resume_from_checkpoint = resume_from_checkpoint
        self.terminate_on_nan = terminate_on_nan
        self.shown_warnings = set()

        self.fast_dev_run = fast_dev_run
        if self.fast_dev_run:
            self.num_sanity_val_steps = 0
            self.max_epochs = 1
            log.info('Running in fast_dev_run mode: will run a full train,'
                     ' val and test loop using a single batch')

        # set default save path if user didn't provide one
        self.default_root_dir = default_root_dir

        # Backward compatibility, TODO: remove in v0.8.0
        if default_save_path is not None:
            self.default_root_dir = default_save_path

        if self.default_root_dir is None:
            self.default_root_dir = os.getcwd()

        # training bookeeping
        self.total_batch_idx = 0
        self.running_loss = TensorRunningAccum(window_length=20)
        self.batch_idx = 0
        self.tqdm_metrics = {}
        self.callback_metrics = {}
        self.num_val_batches = 0
        self.num_training_batches = 0
        self.num_test_batches = 0
        self.train_dataloader = None
        self.test_dataloaders = None
        self.val_dataloaders = None

        # training state
        self.model = None
        self.testing = False
        self.disable_validation = False
        self.lr_schedulers = []
        self.optimizers = None
        self.optimizer_frequencies = []
        self.global_step = 0
        self.current_epoch = 0
        self.total_batches = 0
        self.interrupted = False

        # configure logger
        self.configure_logger(logger)

        # configure profiler
        if profiler is True:
            profiler = SimpleProfiler()
        self.profiler = profiler or PassThroughProfiler()

        # configure early stop callback
        # creates a default one if none passed in
        self.configure_early_stopping(early_stop_callback)

        # configure checkpoint callback
        self.checkpoint_callback = checkpoint_callback
        self.weights_save_path = weights_save_path

        # accumulated grads
        self.accumulate_grad_batches = accumulate_grad_batches
        self.configure_accumulated_gradients(accumulate_grad_batches)

        # for gpus allow int, string and gpu list
        if auto_select_gpus and isinstance(gpus, int):
            self.gpus = pick_multiple_gpus(gpus)
        else:
            self.gpus = gpus

        self.data_parallel_device_ids = parse_gpu_ids(self.gpus)
        self.root_gpu = determine_root_gpu_device(self.data_parallel_device_ids)
        self.root_device = torch.device("cpu")

        # tpu state flags
        self.use_tpu = False
        self.tpu_local_core_rank = None
        self.tpu_global_core_rank = None

        # distributed backend choice
        self.use_ddp = False
        self.use_ddp2 = False
        self.use_dp = False
        self.single_gpu = False
        self.distributed_backend = distributed_backend
        self.set_distributed_mode(distributed_backend, self.num_nodes)

        # override dist backend when using tpus
        if self.on_tpu:
            self.init_tpu()
            self.current_tpu_idx = None

        # init flags for SLURM+ddp to work
        self.proc_rank = 0
        self.world_size = 1
        self.node_rank = 0
        self.configure_slurm_ddp(self.num_nodes)

        # nvidia setup
        self.set_nvidia_flags(self.is_slurm_managing_tasks, self.data_parallel_device_ids)

        # can't init progress bar here because starting a new process
        # means the progress_bar won't survive pickling
        # backward compatibility
        if show_progress_bar is not None:
            self.show_progress_bar = show_progress_bar

        # logging
        self.log_save_interval = log_save_interval
        self.val_check_interval = val_check_interval

        # backward compatibility
        if add_row_log_interval is not None:
            rank_zero_warn("`add_row_log_interval` has renamed to `row_log_interval` since v0.5.0"
                           " and this method will be removed in v0.8.0", DeprecationWarning)
            if not row_log_interval:  # in case you did not set the proper value
                row_log_interval = add_row_log_interval
        self.row_log_interval = row_log_interval

        # how much of the data to use
        self.overfit_pct = overfit_pct
        self.determine_data_use_amount(train_percent_check, val_percent_check,
                                       test_percent_check, overfit_pct)

        # 16 bit mixed precision training using apex
        self.amp_level = amp_level
        self.precision = precision

        # Backward compatibility, TODO: remove in v0.9.0
        if use_amp is not None:
            rank_zero_warn("`use_amp` has been replaced by `precision` since v0.7.0"
                           " and this argument will be removed in v0.9.0", DeprecationWarning)
            self.precision = 16 if use_amp else 32

        assert self.precision in (16, 32), 'only 32 or 16 bit precision supported'

        if self.precision == 16 and self.num_tpu_cores is None:
            use_amp = True
        self.init_amp(use_amp)

        # Callback system
        self.on_init_end()
예제 #28
0
class TrainingBatchLoop(Loop[_OUTPUTS_TYPE]):
    """Runs over a single batch of data."""
    def __init__(self) -> None:
        super().__init__()
        self.accumulated_loss = TensorRunningAccum(window_length=20)
        self.running_loss = TensorRunningAccum(window_length=20)
        # the current split index when the batch gets split into chunks in truncated backprop through time
        self.split_idx: int = 0
        self.optimizer_loop = OptimizerLoop()
        self.manual_loop = ManualOptimization()

        self._outputs: _OUTPUTS_TYPE = []
        self._remaining_splits: List[Tuple[int, Any]] = []

    @property
    def done(self) -> bool:
        """Returns if all batch splits have been processed already."""
        return len(self._remaining_splits) == 0

    def connect(  # type: ignore[override]
            self,
            optimizer_loop: Optional[OptimizerLoop] = None,
            manual_loop: Optional[ManualOptimization] = None) -> None:
        if optimizer_loop is not None:
            self.optimizer_loop = optimizer_loop
        if manual_loop is not None:
            self.manual_loop = manual_loop

    def reset(self) -> None:
        """Resets the loop state."""
        self._outputs = []

    def on_run_start(self,
                     kwargs: OrderedDict) -> None:  # type: ignore[override]
        """Splits the data into tbptt splits.

        Args:
            kwargs: the kwargs passed down to the hooks.
        """
        batch = kwargs["batch"]
        self._remaining_splits = list(enumerate(
            self._tbptt_split_batch(batch)))

    def advance(self, kwargs: OrderedDict) -> None:  # type: ignore[override]
        """Runs the train step together with optimization (if necessary) on the current batch split.

        Args:
            kwargs: the kwargs passed down to the hooks.
        """
        # replace the batch with the split batch
        self.split_idx, kwargs["batch"] = self._remaining_splits.pop(0)

        self.trainer._logger_connector.on_train_split_start(self.split_idx)

        outputs: Optional[Union[_OPTIMIZER_LOOP_OUTPUTS_TYPE,
                                _MANUAL_LOOP_OUTPUTS_TYPE]] = None  # for mypy
        # choose which loop will run the optimization
        if self.trainer.lightning_module.automatic_optimization:
            optimizers = _get_active_optimizers(
                self.trainer.optimizers, self.trainer.optimizer_frequencies,
                kwargs.get("batch_idx", 0))
            outputs = self.optimizer_loop.run(optimizers, kwargs)
        else:
            outputs = self.manual_loop.run(kwargs)
        if outputs:
            # automatic: can be empty if all optimizers skip their batches
            # manual: #9052 added support for raising `StopIteration` in the `training_step`. If that happens,
            # then `advance` doesn't finish and an empty dict is returned
            self._outputs.append(outputs)

    def on_run_end(self) -> _OUTPUTS_TYPE:
        self.optimizer_loop._hiddens = None
        # this is not necessary as the manual loop runs for only 1 iteration, but just in case
        self.manual_loop._hiddens = None
        output, self._outputs = self._outputs, []  # free memory
        self._remaining_splits = []
        return output

    def teardown(self) -> None:
        self.optimizer_loop.teardown()
        self.manual_loop.teardown()
        # release memory
        if self.accumulated_loss.memory is not None:
            self.accumulated_loss.memory = self.accumulated_loss.memory.cpu()
        if self.running_loss.memory is not None:
            self.running_loss.memory = self.running_loss.memory.cpu()

    def _tbptt_split_batch(self, batch: Any) -> List[Any]:
        """Splits a single batch into a list of sequence steps for tbptt.

        Args:
            batch: the current batch to split
        """
        tbptt_steps = self.trainer.lightning_module.truncated_bptt_steps
        if tbptt_steps == 0:
            return [batch]

        splits = self.trainer._call_lightning_module_hook(
            "tbptt_split_batch", batch, tbptt_steps)
        return splits

    def _update_running_loss(self, current_loss: Tensor) -> None:
        """Updates the running loss value with the current value."""
        if self.trainer.lightning_module.automatic_optimization:
            # track total loss for logging (avoid mem leaks)
            self.accumulated_loss.append(current_loss)

        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() *
                                     self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
예제 #29
0
class TrainLoop:
    def __init__(self, trainer):
        self.trainer = trainer
        self.early_stopping_accumulator = None
        self.checkpoint_accumulator = None
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self.automatic_optimization = True
        self._curr_step_result = None
        self._cur_grad_norm_dict = None

    def on_trainer_init(self, max_epochs, min_epochs, max_steps, min_steps,
                        num_sanity_val_steps, automatic_optimization):
        self.trainer.global_step = 0
        self.trainer.current_epoch = 0
        self.trainer.interrupted = False
        self.trainer.should_stop = False
        self.trainer._state = TrainerState.INITIALIZING

        self.trainer.total_batch_idx = 0
        self.trainer.batch_idx = 0
        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None
        self.automatic_optimization = automatic_optimization

        self.trainer.max_epochs = max_epochs
        self.trainer.min_epochs = min_epochs
        self.trainer.max_steps = max_steps
        self.trainer.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

    @property
    def num_optimizers(self):
        num_optimizers = len(self.get_optimizers_iterable())
        return num_optimizers

    def should_skip_training(self):
        if self.trainer.current_epoch >= self.trainer.max_epochs:
            return True

        if self.trainer.limit_train_batches == 0:
            return True

        return False

    def on_train_start(self):
        # clear cache before training
        if self.trainer.on_gpu and self.trainer.root_gpu is not None:
            # use context because of:
            # https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
            with torch.cuda.device(f"cuda:{self.trainer.root_gpu}"):
                torch.cuda.empty_cache()

        # hook
        self.trainer.call_hook("on_train_start")

    def setup_fit(self, model, train_dataloader, val_dataloaders, datamodule):
        # bind logger and other properties
        self.trainer.model_connector.copy_trainer_model_properties(model)

        # clean hparams
        if hasattr(model, "hparams"):
            parsing.clean_namespace(model.hparams)

        # links data to the trainer
        self.trainer.data_connector.attach_data(model, train_dataloader,
                                                val_dataloaders, datamodule)

        # check that model is configured correctly
        self.trainer.config_validator.verify_loop_configurations(model)

    def setup_training(self, model: LightningModule):
        """Sanity check a few things before starting actual training.

        Args:
            model: The model to run sanity test on.
        """
        # --------------------------
        # Setup??
        # --------------------------
        ref_model = model
        if self.trainer.data_parallel:
            ref_model = model.module

        # set the ranks and devices
        self.trainer.accelerator_backend.dist.rank = self.trainer.global_rank
        self.trainer.accelerator_backend.dist.device = ref_model.device

        # give model convenience properties
        ref_model.trainer = self.trainer

        # set local properties on the model
        self.trainer.model_connector.copy_trainer_model_properties(ref_model)

        # init amp. Must be done here instead of __init__ to allow ddp to work
        if self.trainer.amp_backend == AMPType.NATIVE and self.trainer.precision == 16 and not self.trainer.use_tpu:
            self.trainer.scaler = self.trainer.precision_connector.backend.scaler

        # log hyper-parameters
        if self.trainer.logger is not None:
            # save exp to get started (this is where the first experiment logs are written)
            self.trainer.logger.log_hyperparams(ref_model.hparams_initial)
            self.trainer.logger.log_graph(ref_model)
            self.trainer.logger.save()

        # wait for all to join if on distributed
        self.trainer.accelerator_backend.barrier("setup_training")

        # register auto-resubmit when on SLURM
        self.trainer.slurm_connector.register_slurm_signal_handlers()

        # --------------------------
        # Pre-train
        # --------------------------
        # on pretrain routine start
        self.trainer.on_pretrain_routine_start(ref_model)
        if self.trainer.is_function_implemented("on_pretrain_routine_start"):
            ref_model.on_pretrain_routine_start()

        # print model summary
        if self.trainer.is_global_zero and self.trainer.weights_summary is not None and not self.trainer.testing:
            if self.trainer.weights_summary in ModelSummary.MODES:
                ref_model.summarize(mode=self.trainer.weights_summary)
            else:
                raise MisconfigurationException(
                    "weights_summary can be None, " +
                    ", ".join(ModelSummary.MODES))

        # track model now.
        # if cluster resets state, the model will update with the saved weights
        self.trainer.model = model

        # restore training and model before hpc is called
        self.trainer.checkpoint_connector.restore_weights(model)

        # on pretrain routine end
        self.trainer.on_pretrain_routine_end(ref_model)
        if self.trainer.is_function_implemented("on_pretrain_routine_end"):
            ref_model.on_pretrain_routine_end()

    def on_train_end(self):
        if self._teardown_already_run:
            return

        self._teardown_already_run = True

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.trainer.global_step -= 1
        self.check_checkpoint_callback(should_save=True, is_last=True)
        self.trainer.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        if self.trainer.global_rank == 0:
            self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator_backend.on_train_end()

        # clear mem
        if self.trainer.on_gpu:
            model = self.trainer.get_model()
            model.cpu()
            torch.cuda.empty_cache()

    def check_checkpoint_callback(self, should_save, is_last=False):
        # TODO bake this logic into the checkpoint callback
        if should_save and self.trainer.checkpoint_connector.has_trained:
            checkpoint_callbacks = [
                c for c in self.trainer.callbacks
                if isinstance(c, ModelCheckpoint)
            ]

            if is_last and any(c.save_last for c in checkpoint_callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.get_model()

            for callback in checkpoint_callbacks:
                callback.on_validation_end(self.trainer, model)

    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.trainer.current_epoch = epoch

        model = self.trainer.get_model()

        # reset train dataloader
        if self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # set seed for distributed sampler (enables shuffling for each epoch)
        try:
            self.trainer.train_dataloader.sampler.set_epoch(epoch)
        except Exception:
            pass

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_epoch_start(
            self.trainer, self.trainer.get_model())

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # structured result accumulators for callbacks
        self.early_stopping_accumulator = Accumulator()
        self.checkpoint_accumulator = Accumulator()

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")

    def on_train_batch_end(self, epoch_output, epoch_end_outputs, batch,
                           batch_idx, dataloader_idx):
        # hook
        self.trainer.call_hook('on_batch_end')
        self.trainer.call_hook('on_train_batch_end', epoch_end_outputs, batch,
                               batch_idx, dataloader_idx)

        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, epoch_end_outputs)

        # reset batch logger internals
        self.trainer.logger_connector.on_train_batch_end()

    def reset_train_val_dataloaders(self, model):
        if not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, epoch_end_outputs):
        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(epoch_end_outputs):
            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs,
                          list) and len(opt_outputs) == 1 and not isinstance(
                              opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]
            epoch_output[opt_idx].append(opt_outputs)

    def get_optimizers_iterable(self):
        """
        Generates an iterable with (idx, optimizer) for each optimizer.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [[opt_idx, self.trainer.optimizers[opt_idx]]]

    def on_after_backward(self, training_step_output, batch_idx,
                          untouched_loss):
        is_result_obj = isinstance(training_step_output, Result)

        if is_result_obj:
            training_step_output.detach()
        else:
            training_step_output.batch_loss = training_step_output.batch_loss.detach(
            )

        # insert after step hook
        self.trainer.call_hook("on_after_backward")

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(
            batch_idx, untouched_loss.detach())

    def _check_training_step_output(self, training_step_output):
        if isinstance(training_step_output,
                      torch.Tensor) and not self.automatic_optimization:
            if training_step_output.grad_fn is None:
                # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
                raise MisconfigurationException(
                    "In manual optimization, `training_step` should not return a Tensor"
                )

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        # give the PL module a result for logging
        model_ref = self.trainer.get_model()

        with self.trainer.profiler.profile("model_forward"):
            args = self.build_train_args(split_batch, batch_idx, opt_idx,
                                         hiddens)

            # manually capture logged metrics
            model_ref._current_fx_name = 'training_step'
            model_ref._results = Result()
            training_step_output = self.trainer.accelerator_backend.training_step(
                args)
            self.trainer.logger_connector.cache_logged_metrics()

            self._check_training_step_output(training_step_output)

            training_step_output = self.trainer.call_hook(
                "training_step_end", training_step_output)

            training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
                training_step_output, split_batch)
            is_result_obj = isinstance(training_step_output, Result)

            if training_step_output_for_epoch_end is None:
                return None

        # enable empty loss when using manual opt
        closure_loss = None
        untouched_loss = None

        if self.trainer.train_loop.automatic_optimization:
            # accumulate loss
            # (if accumulate_grad_batches = 1 no effect)
            if is_result_obj:
                closure_loss = training_step_output.minimize
            else:
                closure_loss = training_step_output.batch_loss

            closure_loss = closure_loss / self.trainer.accumulate_grad_batches

            # the loss will get scaled for amp. avoid any modifications to it
            untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
            hiddens=training_step_output.hiddens,
        )
        return result

    def _process_training_step_output(self, training_step_output, split_batch):
        training_step_output_for_epoch_end = training_step_output

        # enable validation_step return None
        if training_step_output_for_epoch_end is None:
            return None, None

        # -----------------------------------------
        # process result return (DEPRECATE in 1.0)
        # -----------------------------------------
        if isinstance(training_step_output, Result):
            training_step_output_for_epoch_end = self._process_result(
                training_step_output, split_batch)
            return training_step_output_for_epoch_end, training_step_output

        # -----------------------------------------
        # process hybrid (1.0)
        # -----------------------------------------
        # no need for these checks in 1.0.0
        # TODO: remove checks in 1.0.0
        is_tensor = isinstance(training_step_output_for_epoch_end,
                               torch.Tensor)
        is_1_0_output = is_tensor or ("log" not in training_step_output
                                      and "progress_bar"
                                      not in training_step_output)
        if is_1_0_output:
            return self._process_training_step_output_1_0(
                training_step_output, split_batch)

        # -----------------------------------------
        # process old dict (deprecate 1.0)
        # -----------------------------------------
        training_step_output = self.trainer.process_dict_result(
            training_step_output, train=True)

        training_step_output = AttributeDict(
            batch_loss=training_step_output[0],
            pbar_on_batch_end=training_step_output[1],
            log_metrics=training_step_output[2],
            callback_metrics=training_step_output[3],
            hiddens=training_step_output[4],
        )
        # if the user decides to finally reduce things in epoch_end, save raw output without graphs
        if isinstance(training_step_output_for_epoch_end, torch.Tensor):
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
            )
        else:
            training_step_output_for_epoch_end = recursive_detach(
                training_step_output_for_epoch_end)

        return training_step_output_for_epoch_end, training_step_output

    def _process_training_step_output_1_0(self, training_step_output,
                                          split_batch):
        result = self.trainer.get_model()._results

        loss = None
        hiddens = None

        # handle dict return
        if isinstance(training_step_output, dict):
            loss = training_step_output.pop("loss", None)
            hiddens = training_step_output.pop("hiddens", None)
            result["extra"] = training_step_output

        # handle scalar return
        elif isinstance(training_step_output, torch.Tensor):
            loss = training_step_output
            result["extra"] = {}

        # map to results under the hood
        result.minimize = loss
        result.hiddens = hiddens

        # track batch for manual reduction with result
        result.track_batch_size(len(split_batch))

        # track metrics without grads for epoch reduction
        training_step_output_for_epoch_end = copy(result)
        training_step_output_for_epoch_end.detach()
        if self.trainer.move_metrics_to_cpu:
            training_step_output_for_epoch_end.cpu()

        # what flows back into the system
        training_step_output = result

        return training_step_output_for_epoch_end, training_step_output

    def _process_result(self, training_step_output, split_batch):
        training_step_output.track_batch_size(len(split_batch))
        m = """
        TrainResult and EvalResult were deprecated in 0.9.1 and support will drop in 1.0.0.
        Use self.log and .write from the LightningModule to log metrics and write predictions.
        training_step can now only return a scalar (for the loss) or a dictionary with anything you want.

        Option 1:
        return loss

        Option 2:
        return {'loss': loss, 'anything_else': ...}

        Option 3:
        return {'loss': loss, 'hiddens': hiddens, 'anything_else': ...}
            """
        rank_zero_warn(m)

        # don't allow EvalResult in the training_step
        if isinstance(training_step_output, EvalResult):
            raise MisconfigurationException(
                "training_step cannot return EvalResult, "
                "use a dict or TrainResult instead")

        training_step_output_for_epoch_end = copy(training_step_output)
        training_step_output_for_epoch_end.detach()

        return training_step_output_for_epoch_end

    def optimizer_step(self, optimizer, opt_idx, batch_idx,
                       train_step_and_backward_closure):
        model_ref = self.trainer.get_model()

        is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
        using_native_amp = self.trainer.amp_backend == AMPType.NATIVE

        # native amp + lbfgs is a no go right now
        if using_native_amp and is_lbfgs:
            raise MisconfigurationException(
                'native PyTorch amp and lbfgs are not compatible.'
                ' To request, please file a Github issue in PyTorch and tag @mcarilli'
            )

        # model hook
        model_ref.optimizer_step(
            self.trainer.current_epoch,
            batch_idx,
            optimizer,
            opt_idx,
            train_step_and_backward_closure,
            on_tpu=self.trainer.use_tpu and TPU_AVAILABLE,
            using_native_amp=using_native_amp,
            using_lbfgs=is_lbfgs,
        )

    def on_before_zero_grad(self, optimizer):
        self.trainer.call_hook('on_before_zero_grad', optimizer)

    def track_and_norm_grad(self, optimizer):
        # track gradient norms
        grad_norm_dic = self._track_gradient_norm()

        # clip gradients
        self.trainer.accelerator_backend.clip_gradients(optimizer)
        self._cur_grad_norm_dict = grad_norm_dic

    def _track_gradient_norm(self):
        grad_norm_dict = {}
        if (self.trainer.global_step +
                1) % self.trainer.log_every_n_steps == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.get_model()
                grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
        return grad_norm_dict

    def process_hiddens(self, opt_closure_result):
        hiddens = opt_closure_result.hiddens
        if isinstance(opt_closure_result.training_step_output, Result):
            opt_closure_result.training_step_output_for_epoch_end.drop_hiddens(
            )
        return hiddens

    def tbptt_split_batch(self, batch):
        splits = [batch]
        if self.trainer.truncated_bptt_steps is not None:
            model_ref = self.trainer.get_model()
            with self.trainer.profiler.profile("tbptt_split_batch"):
                splits = model_ref.tbptt_split_batch(
                    batch, self.trainer.truncated_bptt_steps)
        return splits

    def run_training_epoch(self):

        # get model
        model = self.trainer.get_model()

        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator_backend.process_dataloader(
            self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_optimizers)]

        # enable profiling for the dataloader
        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(
            train_dataloader)
        dataloader_idx = 0
        should_check_val = False
        for batch_idx, (batch, is_last_batch) in train_dataloader:

            self.trainer.batch_idx = batch_idx

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.run_training_batch(batch, batch_idx,
                                                       dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            if batch_output.signal == -1:
                break

            # only track outputs when user implements training_epoch_end
            # otherwise we will build up unnecessary memory
            epoch_end_outputs = self.process_train_step_outputs(
                batch_output.training_step_output_for_epoch_end,
                self.early_stopping_accumulator,
                self.checkpoint_accumulator,
            )

            # hook
            # TODO: add outputs to batches
            self.on_train_batch_end(epoch_output, epoch_end_outputs, batch,
                                    batch_idx, dataloader_idx)

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.log_train_step_metrics(batch_output)

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val_fx(
                batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.run_evaluation(test_mode=False)
                # reset stage to train
                self.trainer.logger_connector.set_stage("train")

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end()

            # update LR schedulers
            monitor_metrics = deepcopy(
                self.trainer.logger_connector.callback_metrics)
            self.update_train_loop_lr_schedulers(
                monitor_metrics=monitor_metrics)
            self.trainer.checkpoint_connector.has_trained = True

            # max steps reached, end training
            if self.trainer.max_steps is not None and self.trainer.max_steps == self.trainer.global_step + 1:
                accumulation_done = self._accumulated_batches_reached()
                # Ensure accumulation across batches has completed before breaking loop
                if accumulation_done:
                    break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.trainer.should_stop:
                break

            self.trainer.total_batch_idx += 1

            # stop epoch if we limited the number of training batches
            if (batch_idx + 1) >= self.trainer.num_training_batches:
                break

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

        # epoch end hook
        self.run_on_epoch_end_hook(epoch_output)

        # log epoch metrics
        self.trainer.logger_connector.log_train_epoch_end_metrics(
            epoch_output, self.checkpoint_accumulator,
            self.early_stopping_accumulator, self.num_optimizers)

        # when no val loop is present or fast-dev-run still need to call checkpoints
        self.check_checkpoint_callback(not (
            should_check_val or is_overridden('validation_step', model)))

        # increment the global step once
        # progress global step according to grads progress
        self.increment_accumulated_grad_global_step()

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dic = {}

        # bookkeeping
        using_results_obj = False
        self.trainer.hiddens = None

        # track all outputs across time and num of optimizers
        batch_outputs = [[]
                         for _ in range(len(self.get_optimizers_iterable()))]

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_batch_start")
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_train_batch_start", batch,
                                          batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # lightning module hook
        splits = self.tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):

            # create an iterable for optimizers and loop over them
            for opt_idx, optimizer in self.prepare_optimizers():

                # toggle model params + set info to logger_connector
                self.run_train_split_start(split_idx, split_batch, opt_idx,
                                           optimizer)

                if self.should_accumulate():
                    # For gradient accumulation

                    # -------------------
                    # calculate loss (train step + train step end)
                    # -------------------

                    # automatic_optimization=True: perform dpp sync only when performing optimizer_step
                    # automatic_optimization=False: don't block synchronization here
                    with self.block_ddp_sync_behaviour():
                        self.training_step_and_backward(
                            split_batch, batch_idx, opt_idx, optimizer,
                            self.trainer.hiddens)

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients

                else:
                    if self.automatic_optimization:

                        def train_step_and_backward_closure():
                            result = self.training_step_and_backward(
                                split_batch, batch_idx, opt_idx, optimizer,
                                self.trainer.hiddens)
                            return None if result is None else result.loss

                        # optimizer step
                        self.optimizer_step(optimizer, opt_idx, batch_idx,
                                            train_step_and_backward_closure)

                    else:
                        self._curr_step_result = self.training_step(
                            split_batch, batch_idx, opt_idx,
                            self.trainer.hiddens)

                    if self._curr_step_result is None:
                        # user decided to skip optimization
                        # make sure to zero grad.
                        continue

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                    # todo: Properly aggregate grad_norm accros opt_idx and split_idx
                    grad_norm_dic = self._cur_grad_norm_dict
                    self._cur_grad_norm_dict = None

                    # update running loss + reset accumulated loss
                    self.update_running_loss()

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            training_step_output_for_epoch_end=batch_outputs,
        )
        return result

    @contextmanager
    def block_ddp_sync_behaviour(self):
        """
        automatic_optimization = True
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        automatic_optimization = False
        do not block ddp gradient sync when using manual optimization
        as gradients are needed within the training step

        Returns: context manager with sync behaviour off

        """
        if self.trainer.accelerator_backend is not None and self.automatic_optimization:
            yield self.trainer.accelerator_backend.block_ddp_plugin_sync_behaviour(
            )
        else:
            yield None

    def _process_closure_result(self, batch_outputs: list,
                                opt_idx: int) -> list:
        opt_closure_result = self._curr_step_result

        if opt_closure_result is not None:

            # cache metrics
            self.trainer.logger_connector.cache_training_step_metrics(
                opt_closure_result)

            # track hiddens
            self.trainer.hiddens = self.process_hiddens(opt_closure_result)

            # check if loss or model weights are nan
            if self.trainer.terminate_on_nan:
                self.trainer.detect_nan_tensors(opt_closure_result.loss)

            # track all the outputs across all steps
            batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
            batch_outputs[batch_opt_idx].append(
                opt_closure_result.training_step_output_for_epoch_end)

            if self.automatic_optimization:
                # track total loss for logging (avoid mem leaks)
                self.accumulated_loss.append(opt_closure_result.loss)

        self._curr_step_result = None

        return batch_outputs

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx,
                                   optimizer, hiddens):
        """
        wrap the forward step in a closure so second order methods work
        """
        with self.trainer.profiler.profile("training_step_and_backward"):
            # lightning module hook
            result = self.training_step(split_batch, batch_idx, opt_idx,
                                        hiddens)
            self._curr_step_result = result

            if result is None:
                self.warning_cache.warn(
                    "training_step returned None if it was on purpose, ignore this warning..."
                )
                return None

            if self.trainer.train_loop.automatic_optimization:
                # backward pass
                with self.trainer.profiler.profile("model_backward"):
                    self.backward(result, optimizer, opt_idx)

                # hook - call this hook only
                # when gradients have finished to accumulate
                if not self.should_accumulate():
                    self.on_after_backward(result.training_step_output,
                                           batch_idx, result.loss)

                # check if loss or model weights are nan
                if self.trainer.terminate_on_nan:
                    self.trainer.detect_nan_tensors(result.loss)

        return result

    def backward(self, result, optimizer, opt_idx, *args, **kwargs):
        self.trainer.dev_debugger.track_event("backward_call")

        # backward can be called manually in the training loop
        if isinstance(result, torch.Tensor):
            self.trainer.accelerator_backend.backward(result, optimizer,
                                                      opt_idx, *args, **kwargs)
        else:
            result.closure_loss = self.trainer.accelerator_backend.backward(
                result.closure_loss, optimizer, opt_idx, *args, **kwargs)

        if not self.should_accumulate():
            # track gradients
            self.track_and_norm_grad(optimizer=optimizer)

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        if num_accumulated_batches_reached or num_training_batches_reached:
            # update lr
            self.trainer.optimizer_connector.update_learning_rates(
                interval="step", monitor_metrics=monitor_metrics)

    def run_on_epoch_end_hook(self, epoch_output):
        # inform logger the batch loop has finished
        self.trainer.logger_connector.on_train_epoch_end()

        self.trainer.call_hook('on_epoch_end')
        self.trainer.call_hook('on_train_epoch_end', epoch_output)

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.trainer.global_step += 1

    def _accumulated_batches_reached(self):
        return (self.trainer.batch_idx +
                1) % self.trainer.accumulate_grad_batches == 0

    def _num_training_batches_reached(self):
        return (self.trainer.batch_idx +
                1) == self.trainer.num_training_batches

    def should_accumulate(self):
        # checks if backward or backward + optimizer step (via closure)
        accumulation_done = self._accumulated_batches_reached()
        is_final_batch = self._num_training_batches_reached()
        return not (accumulation_done or is_final_batch)

    def should_check_val_fx(self, batch_idx, is_last_batch):
        # decide if we should run validation
        is_val_check_batch = (batch_idx +
                              1) % self.trainer.val_check_batch == 0
        is_val_check_epoch = (self.trainer.current_epoch +
                              1) % self.trainer.check_val_every_n_epoch == 0
        can_check_val = self.trainer.enable_validation and is_val_check_epoch
        should_check_val = is_val_check_batch or self.trainer.should_stop
        is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float(
            "inf")
        should_check_val = can_check_val and (
            should_check_val or is_last_batch_for_infinite_dataset)

        return should_check_val

    def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.trainer.optimizers) > 1:
            if self.trainer.has_arg("training_step", "optimizer_idx"):
                args.append(opt_idx)
            else:
                num_opts = len(self.trainer.optimizers)
                raise ValueError(
                    f"Your LightningModule defines {num_opts} optimizers but "
                    f'training_step is missing the "optimizer_idx" argument.')

        # pass hiddens if using tbptt
        if self.trainer.truncated_bptt_steps is not None:
            args.append(hiddens)

        return args

    def save_loggers_on_train_batch_end(self):
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs or self.trainer.fast_dev_run is True:
            if self.trainer.is_global_zero and self.trainer.logger is not None:
                self.trainer.logger.save()

    def process_train_step_outputs(self, all_train_step_outputs,
                                   early_stopping_accumulator,
                                   checkpoint_accumulator):
        """
        Figure out what needs to be tracked/logged at the end of the epoch
        """

        # the training step outputs a list per optimizer. The list contains the outputs at each time step
        # when no TBPTT is used, then the list has 1 item per batch
        # when TBPTT IS used, then the list has n items (1 per time step)
        epoch_end_outputs = []
        for optimizer_idx_outputs in all_train_step_outputs:
            # extract one representative sample from each time step (1 if no tbptt) and 0th optimizer
            if len(optimizer_idx_outputs) == 0:
                continue

            sample_output = optimizer_idx_outputs[-1]

            # pull out callback info if available (ie: Results object)
            if isinstance(sample_output,
                          dict) and "early_stop_on" in sample_output:
                early_stopping_accumulator.accumulate(
                    sample_output["early_stop_on"])

            if isinstance(sample_output,
                          dict) and "checkpoint_on" in sample_output:
                checkpoint_accumulator.accumulate(
                    sample_output["checkpoint_on"])

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(
                sample_output,
                Result) and sample_output.should_reduce_on_epoch_end

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if is_overridden(
                    "training_epoch_end",
                    model=self.trainer.get_model()) or auto_reduce_tng_result:
                epoch_end_outputs.append(optimizer_idx_outputs)

        return epoch_end_outputs

    def prepare_optimizers(self):
        # in manual optimization we loop over all optimizers at once
        optimizers = self.get_optimizers_iterable()
        if not self.automatic_optimization:
            optimizers = [optimizers[0]]
        return optimizers

    def run_train_split_start(self, split_idx, split_batch, opt_idx,
                              optimizer):
        # set split_idx to trainer for tracking
        self.trainer.split_idx = split_idx

        # make sure only the gradients of the current optimizer's parameters are calculated
        # in the training step to prevent dangling gradients in multiple-optimizer setup.
        if self.automatic_optimization and len(self.trainer.optimizers) > 1:
            model = self.trainer.get_model()
            model.toggle_optimizer(optimizer, opt_idx)

        # use to track metrics internally
        self.trainer.logger_connector.on_train_split_start(
            split_idx, opt_idx, split_batch)

    def update_running_loss(self):
        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() *
                                     self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
예제 #30
0
class TrainerTrainLoopMixin(ABC):
    # this is just a summary on variables used in this abstract class,
    #  the proper values/initialisation should be done in child class
    max_epochs: int
    min_epochs: int
    on_gpu: bool
    root_gpu: ...
    use_ddp: bool
    use_dp: bool
    use_ddp2: bool
    use_horovod: bool
    use_single_gpu: bool
    use_tpu: bool
    data_parallel_device_ids: ...
    check_val_every_n_epoch: ...
    num_training_batches: int
    val_check_batch: ...
    disable_validation: bool
    fast_dev_run: ...
    accumulation_scheduler: ...
    lr_schedulers: ...
    early_stop_callback: ...
    callback_metrics: ...
    logger: Union[LightningLoggerBase, bool]
    global_step: int
    testing: bool
    log_save_interval: float
    global_rank: int
    row_log_interval: float
    truncated_bptt_steps: ...
    optimizers: ...
    optimizer_frequencies: ...
    accumulate_grad_batches: int
    track_grad_norm: ...
    model: LightningModule
    interrupted: bool
    running_loss: ...
    progress_bar_dict: ...
    reduce_lr_on_plateau_scheduler: ...
    profiler: ...
    batch_idx: int
    precision: ...
    train_dataloader: DataLoader
    reload_dataloaders_every_epoch: bool
    max_steps: int
    min_steps: int
    total_batch_idx: int
    terminate_on_nan: bool
    tpu_id: int
    interactive_ddp_procs: ...
    _state: TrainerState
    amp_backend: AMPType
    on_tpu: bool
    accelerator_backend: ...
    val_dataloaders: ...

    # Callback system
    callbacks: List[Callback]
    on_train_start: Callable
    on_train_end: Callable
    on_batch_start: Callable
    on_batch_end: Callable
    on_train_batch_start: Callable
    on_train_batch_end: Callable
    on_epoch_start: Callable
    on_epoch_end: Callable
    on_validation_end: Callable
    on_keyboard_interrupt: Callable
    on_train_epoch_start: Callable
    on_train_epoch_end: Callable

    @abstractmethod
    def get_model(self) -> LightningModule:
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def is_function_implemented(self, *args, **kwargs):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def run_evaluation(self, *args, **kwargs):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def transfer_batch_to_gpu(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def clip_gradients(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def detect_nan_tensors(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def add_progress_bar_metrics(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def log_metrics(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def process_output(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def reset_train_dataloader(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def reset_val_dataloader(self, model):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def call_hook(self, hook_name, *args, **kwargs):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def has_arg(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    @abstractmethod
    def run_sanity_check(self, *args):
        """Warning: this is just empty shell for code implemented in other class."""

    def train(self):
        self.run_sanity_check(self.get_model())

        # TODO: shrink
        # clear cache before training
        if self.on_gpu and self.root_gpu is not None:
            # use context because of:
            # https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
            with torch.cuda.device(f'cuda:{self.root_gpu}'):
                torch.cuda.empty_cache()

        # get model
        model = self.get_model()

        # enable train mode
        model.train()

        # enable gradients
        torch.set_grad_enabled(True)

        # load data
        # if reload_dataloaders_every_epoch, this is moved to the epoch loop
        if not self.reload_dataloaders_every_epoch:
            self.reset_train_dataloader(model)

        if self.val_dataloaders is None and not self.reload_dataloaders_every_epoch:
            self.reset_val_dataloader(model)

        # Train start events
        with self.profiler.profile('on_train_start'):
            # callbacks
            self.on_train_start()
            # model hooks
            model.on_train_start()

        try:
            # run all epochs
            for epoch in range(self.current_epoch, self.max_epochs):
                # reset train dataloader
                if self.reload_dataloaders_every_epoch:
                    self.reset_train_dataloader(model)
                # set seed for distributed sampler (enables shuffling for each epoch)
                if (self.use_ddp or self.use_horovod or self.on_tpu) \
                        and hasattr(self.train_dataloader, 'sampler') \
                        and hasattr(self.train_dataloader.sampler, 'set_epoch'):
                    self.train_dataloader.sampler.set_epoch(epoch)

                # update training progress in trainer and model
                model.current_epoch = epoch
                self.current_epoch = epoch

                # changing gradient according accumulation_scheduler
                self.accumulation_scheduler.on_epoch_start(self, self.get_model())

                # stores accumulated grad fractions per batch
                self.batch_loss_value = TensorRunningAccum(
                    window_length=self.accumulate_grad_batches
                )

                # -----------------
                # RUN TNG EPOCH
                # -----------------
                self.run_training_epoch()

                if self.max_steps and self.max_steps <= self.global_step:
                    self.run_training_teardown()
                    return

                # update LR schedulers
                self.update_learning_rates(interval='epoch')

                # early stopping
                met_min_epochs = epoch >= self.min_epochs - 1
                met_min_steps = self.global_step >= self.min_steps if self.min_steps else True

                if self.should_stop:
                    if (met_min_epochs and met_min_steps):
                        self.run_training_teardown()
                        return
                    else:
                        log.info('Trainer was signaled to stop but required minimum epochs'
                                 f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
                                 ' not been met. Training will continue...')

            self.run_training_teardown()

        except KeyboardInterrupt:
            rank_zero_warn('Detected KeyboardInterrupt, attempting graceful shutdown...')

            # user could press ctrl+c many times... only shutdown once
            if not self.interrupted:
                self.interrupted = True
                self._state = TrainerState.INTERRUPTED
                self.on_keyboard_interrupt()

                self.run_training_teardown()

    def run_on_epoch_start_hook(self, model):
        # Epoch start events
        with self.profiler.profile('on_epoch_start'):
            # callbacks
            self.on_epoch_start()

            # model hooks
            if self.is_function_implemented('on_epoch_start'):
                model.on_epoch_start()

        # Epoch start events
        with self.profiler.profile('on_train_epoch_start'):
            # callbacks
            self.on_train_epoch_start()

            # model hooks
            if self.is_function_implemented('on_train_epoch_start'):
                model.on_train_epoch_start()

    def run_training_epoch(self):

        # get model
        model = self.get_model()

        # Epoch start events
        self.run_on_epoch_start_hook(model)

        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.accelerator_backend.process_dataloader(self.train_dataloader)

        # bookkeeping
        num_optimizers = len(self._get_optimizers_iterable())
        epoch_output = [[] for _ in range(num_optimizers)]
        should_check_val = False

        # structured result accumulators for callbacks
        early_stopping_accumulator = Accumulator()
        checkpoint_accumulator = Accumulator()

        # run epoch
        for batch_idx, (batch, is_last_batch) in self.profiler.profile_iterable(
                enumerate(_with_is_last(train_dataloader)), "get_train_batch"
        ):
            # stop epoch if we limited the number of training batches
            if batch_idx >= self.num_training_batches:
                break

            self.batch_idx = batch_idx
            model.global_step = self.global_step

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            batch_output = self.run_training_batch(batch, batch_idx)

            # only track outputs when user implements training_epoch_end
            # otherwise we will build up unnecessary memory
            epoch_end_outputs = self.process_train_step_outputs(
                batch_output.training_step_output_for_epoch_end,
                early_stopping_accumulator,
                checkpoint_accumulator
            )

            # track the outputs to reduce at the end of the epoch
            for opt_idx, opt_outputs in enumerate(epoch_end_outputs):
                # with 1 step (no tbptt) don't use a sequence at epoch end
                if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result):
                    opt_outputs = opt_outputs[0]
                epoch_output[opt_idx].append(opt_outputs)

            # when returning -1 from train_step, we end epoch early
            self.should_stop = batch_output.signal == -1

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val(batch_idx, is_last_batch)
            if should_check_val:
                self.run_evaluation(test_mode=False)

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_in_training_loop(batch_idx)

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.save_train_loop_metrics_to_loggers(batch_idx, batch_output)

            # update LR schedulers
            monitor_metrics = deepcopy(self.callback_metrics)
            monitor_metrics.update(batch_output.batch_log_metrics)
            self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics)

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

            # max steps reached, end training
            if self.max_steps is not None and self.max_steps == self.global_step:
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.should_stop:
                break

        # let ddp devices catch up when using horovod
        self.sync_horovod()

        # process epoch outputs
        self.run_training_epoch_end(epoch_output, checkpoint_accumulator, early_stopping_accumulator, num_optimizers)

        # checkpoint callback
        self.check_checkpoint_callback(should_check_val)

        # epoch end hook
        self.run_on_epoch_end_hook(model)

    def process_train_step_outputs(self, all_train_step_outputs, early_stopping_accumulator, checkpoint_accumulator):
        """
        Figure out what needs to be tracked/logged at the end of the epoch
        """

        # the training step outputs a list per optimizer. The list contains the outputs at each time step
        # when no TBPTT is used, then the list has 1 item per batch
        # when TBPTT IS used, then the list has n items (1 per time step)
        epoch_end_outputs = []
        for optimizer_idx_outputs in all_train_step_outputs:
            # extract one representative sample from each time step (1 if no tbptt) and 0th optimizer
            sample_output = optimizer_idx_outputs[-1]

            # pull out callback info if available (ie: Results object)
            if isinstance(sample_output, dict) and 'early_stop_on' in sample_output:
                early_stopping_accumulator.accumulate(sample_output['early_stop_on'])

            if isinstance(sample_output, dict) and 'checkpoint_on' in sample_output:
                checkpoint_accumulator.accumulate(sample_output['checkpoint_on'])

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if is_overridden('training_epoch_end', model=self.get_model()) or auto_reduce_tng_result:
                epoch_end_outputs.append(optimizer_idx_outputs)

        return epoch_end_outputs

    def check_checkpoint_callback(self, should_check_val):
        # when no val loop is present or fast-dev-run still need to call checkpoints
        # TODO bake this logic into the checkpoint callback
        should_activate = not is_overridden('validation_step', self.get_model()) and not should_check_val
        if should_activate:
            checkpoint_callbacks = [c for c in self.callbacks if isinstance(c, ModelCheckpoint)]
            [c.on_validation_end(self, self.get_model()) for c in checkpoint_callbacks]

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        if ((self.batch_idx + 1) % self.accumulate_grad_batches == 0
                or (self.batch_idx + 1) == self.num_training_batches):
            # update lr
            self.update_learning_rates(interval='step', monitor_metrics=monitor_metrics)

    def run_on_epoch_end_hook(self, model):
        with self.profiler.profile('on_epoch_end'):
            # callbacks
            self.on_epoch_end()
            # model hooks
            if self.is_function_implemented('on_epoch_end'):
                model.on_epoch_end()

        with self.profiler.profile('on_train_epoch_end'):
            # callbacks
            self.on_train_epoch_end()

            # model hooks
            if self.is_function_implemented('on_train_epoch_end'):
                model.on_train_epoch_end()

    def run_training_epoch_end(self, epoch_output, checkpoint_accumulator, early_stopping_accumulator, num_optimizers):
        # epoch output is a list. Each item in that list has all the outputs per optimizer
        # epoch_output[optimizer_idx][training_step_idx][tbptt_index]
        # remember that not using truncated backprop is equivalent with truncated back prop of len(1)

        model = self.get_model()

        epoch_log_metrics = {}
        epoch_callback_metrics = {}
        epoch_progress_bar_metrics = {}

        # -----------------------
        # Calculate epoch callback values if given
        # -----------------------
        if checkpoint_accumulator.num_values > 0:
            epoch_callback_metrics['checkpoint_on'] = checkpoint_accumulator.mean()

        if early_stopping_accumulator.num_values > 0:
            epoch_callback_metrics['early_stop_on'] = early_stopping_accumulator.mean()

        # ------------------------
        # determine if using a result obj
        # ------------------------
        # [optimizer_idx][training_step_idx][tbptt_index]
        opt_idx_outputs = epoch_output[0]

        try:
            sample_obj = opt_idx_outputs[0][0] if isinstance(opt_idx_outputs[0], list) else opt_idx_outputs[0]
            is_result_obj = len(epoch_output) > 0 and isinstance(sample_obj, Result)
        except IndexError as e:
            is_result_obj = False

        # --------------------------
        # EPOCH END STEP IF DEFINED
        # --------------------------
        if is_overridden('training_epoch_end', model=model):
            self.global_step += 1

            if is_result_obj:
                # with result object gather across time and training steps so each opt idx has a single result obj
                epoch_output = self.__gather_result_across_time_and_optimizers(epoch_output)

            if num_optimizers == 1:
                epoch_output = epoch_output[0]

            # run training_epoch_end
            # a list with a result per optimizer index
            epoch_output = model.training_epoch_end(epoch_output)

            if isinstance(epoch_output, Result):
                epoch_log_metrics = epoch_output.epoch_log_metrics
                epoch_progress_bar_metrics = epoch_output.epoch_pbar_metrics
            else:
                _processed_outputs = self.process_output(epoch_output)
                epoch_progress_bar_metrics = _processed_outputs[1]
                epoch_log_metrics = _processed_outputs[2]
                epoch_callback_metrics = _processed_outputs[3]

        # --------------------------
        # Structured Result (auto epoch end)
        # --------------------------
        elif is_result_obj:
            epoch_log_metrics, epoch_progress_bar_metrics = self.__auto_reduce_results_on_epoch_end(epoch_output)

        # --------------------------
        # track results
        # --------------------------
        # add the metrics to the loggers
        if epoch_log_metrics and len(epoch_log_metrics) > 0:
            self.log_metrics(epoch_log_metrics, {})

        # add metrics to callbacks
        self.callback_metrics.update(epoch_callback_metrics)

        # add metrics to progress_bar
        if len(epoch_progress_bar_metrics) > 0:
            self.add_progress_bar_metrics(epoch_progress_bar_metrics)

    def __auto_reduce_results_on_epoch_end(self, epoch_output):
        epoch_log_metrics = {}
        epoch_progress_bar_metrics = {}
        for opt_outputs in epoch_output:
            # reduce across time first
            time_reduced_outputs = []
            for train_step_idx in range(len(opt_outputs)):
                tbptt_outs = opt_outputs[train_step_idx]
                tbptt_outs = tbptt_outs[0].__class__.reduce_across_time(tbptt_outs)
                time_reduced_outputs.append(tbptt_outs)

            # reduce across training steps
            opt_outputs = time_reduced_outputs[0].__class__.reduce_on_epoch_end(time_reduced_outputs)
            opt_outputs.minimize = opt_outputs.minimize.mean()
            epoch_log_metrics.update(opt_outputs.epoch_log_metrics)
            epoch_progress_bar_metrics.update(opt_outputs.epoch_pbar_metrics)

        return epoch_log_metrics, epoch_progress_bar_metrics

    def __gather_result_across_time_and_optimizers(self, epoch_output):
        """
        Gather results into a single padded tensor per metric where each tensor is gathered across
        time and across time steps.

        Returns:
            a list where each element is a Result with the tensors gathered
        """
        gathered_epoch_outputs = []
        for opt_outputs in epoch_output:
            # gather across time first
            time_gathered_outputs = []
            for train_step_idx in range(len(opt_outputs)):
                tbptt_outs = opt_outputs[train_step_idx]
                tbptt_outs = tbptt_outs[0].__class__.gather(tbptt_outs)
                time_gathered_outputs.append(tbptt_outs)

            # gather across training steps
            # each metric has dimensions (training_steps, seq_len) (seq_len=1 when no tbptt is used)
            gathered_opt_output = time_gathered_outputs[0].__class__.padded_gather(time_gathered_outputs)
            gathered_epoch_outputs.append(gathered_opt_output)

        return gathered_epoch_outputs

    def sync_horovod(self):
        if self.use_horovod:
            hvd.join(hvd.local_rank() if self.on_gpu else -1)

    def increment_accumulated_grad_global_step(self):
        # progress global step according to grads progress
        if ((self.batch_idx + 1) % self.accumulate_grad_batches == 0
                or (self.batch_idx + 1) == self.num_training_batches):
            self.global_step += 1
        self.total_batch_idx += 1

    def save_train_loop_metrics_to_loggers(self, batch_idx, batch_output):
        # when metrics should be logged
        should_log_metrics = (batch_idx + 1) % self.row_log_interval == 0 or self.should_stop
        if should_log_metrics or self.fast_dev_run:
            # logs user requested information to logger
            metrics = batch_output.batch_log_metrics
            grad_norm_dic = batch_output.grad_norm_dic
            if len(metrics) > 0 or len(grad_norm_dic) > 0:
                self.log_metrics(metrics, grad_norm_dic)

    def save_loggers_in_training_loop(self, batch_idx):
        # when loggers should save to disk
        should_save_log = (batch_idx + 1) % self.log_save_interval == 0 or self.should_stop
        if should_save_log or self.fast_dev_run:
            if self.is_global_zero and self.logger is not None:
                self.logger.save()

    def should_check_val(self, batch_idx, is_last_batch):
        # decide if we should run validation
        is_val_check_batch = (batch_idx + 1) % self.val_check_batch == 0
        can_check_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
        can_check_val = self.enable_validation and can_check_epoch
        should_check_val = is_val_check_batch or self.should_stop
        is_last_batch_for_infinite_dataset = (is_last_batch and self.val_check_batch == float('inf'))
        should_check_val = can_check_val and (should_check_val or is_last_batch_for_infinite_dataset)

        return should_check_val

    def run_training_batch(self, batch, batch_idx):
        # track grad norms
        grad_norm_dic = {}

        # track all metrics for callbacks
        batch_callback_metrics = []

        # track metrics to log
        batch_log_metrics = []

        using_results_obj = False

        # track all outputs across time and num of optimizers
        batch_outputs = [[] for i in range(len(self._get_optimizers_iterable()))]

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # Batch start events
        # TODO: deprecate 1.0
        with self.profiler.profile('on_batch_start'):
            # callbacks
            self.on_batch_start()
            # hooks
            if self.is_function_implemented('on_batch_start'):
                response = self.get_model().on_batch_start(batch)
                if response == -1:
                    return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        with self.profiler.profile('on_train_batch_start'):
            # forward support for multiple loaders
            dataloader_idx = 0
            self.on_train_batch_start(batch, batch_idx, dataloader_idx)
            # hooks
            if self.is_function_implemented('on_train_batch_start'):
                response = self.get_model().on_train_batch_start(batch, batch_idx, dataloader_idx)
                if response == -1:
                    return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        splits = [batch]
        if self.truncated_bptt_steps is not None:
            model_ref = self.get_model()
            with self.profiler.profile('tbptt_split_batch'):
                splits = model_ref.tbptt_split_batch(batch, self.truncated_bptt_steps)

        self.hiddens = None
        for split_idx, split_batch in enumerate(splits):
            self.split_idx = split_idx

            for opt_idx, optimizer in self._get_optimizers_iterable():
                # make sure only the gradients of the current optimizer's parameters are calculated
                # in the training step to prevent dangling gradients in multiple-optimizer setup.
                if len(self.optimizers) > 1:
                    for param in self.get_model().parameters():
                        param.requires_grad = False
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.requires_grad = True

                # -------------------
                # calculate loss (train step + train step end)
                # -------------------
                opt_closure_result = self.optimizer_closure(
                    split_batch,
                    batch_idx,
                    opt_idx,
                    optimizer,
                    self.hiddens
                )
                using_results_obj = isinstance(opt_closure_result.training_step_output, Result)

                # ------------------------------
                # POST forward bookkeeping
                # ------------------------------
                batch_callback_metrics.append(opt_closure_result.training_step_output.callback_metrics)

                # add metrics to loggers
                if using_results_obj:
                    metrics_to_log = opt_closure_result.training_step_output.batch_log_metrics
                    step_pbar_metrics = opt_closure_result.training_step_output.batch_pbar_metrics
                else:
                    metrics_to_log = opt_closure_result.training_step_output.log_metrics
                    step_pbar_metrics = opt_closure_result.training_step_output.pbar_on_batch_end

                # track metrics
                batch_log_metrics.append(metrics_to_log)
                if len(step_pbar_metrics) > 0:
                    self.add_progress_bar_metrics(step_pbar_metrics)

                # track hiddens
                self.hiddens = opt_closure_result.hiddens

                if using_results_obj:
                    opt_closure_result.training_step_output_for_epoch_end.drop_hiddens()

                # check if loss or model weights are nan
                if self.terminate_on_nan:
                    self.detect_nan_tensors(opt_closure_result.loss)

                # track total loss for logging (avoid mem leaks)
                self.batch_loss_value.append(opt_closure_result.loss)

                # track all the outputs across all steps
                batch_outputs[opt_idx].append(opt_closure_result.training_step_output_for_epoch_end)

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients
                if ((self.batch_idx + 1) % self.accumulate_grad_batches == 0
                        or (self.batch_idx + 1) == self.num_training_batches):

                    # backward
                    grad_norm_dic = self.run_batch_backward_pass(split_batch, batch_idx, opt_idx, optimizer)

                    # calculate running loss for display
                    self.running_loss.append(self.batch_loss_value.mean() * self.accumulate_grad_batches)

                    # reset for next set of accumulated grads
                    self.batch_loss_value.reset()

        # Batch end events
        with self.profiler.profile('on_batch_end'):
            # callbacks
            self.on_batch_end()
            # model hooks
            if self.is_function_implemented('on_batch_end'):
                self.get_model().on_batch_end()

        with self.profiler.profile('on_train_batch_end'):
            # forward support for multiple loaders
            dataloader_idx = 0
            self.on_train_batch_end(batch, batch_idx, dataloader_idx)
            # model hooks
            if self.is_function_implemented('on_train_batch_end'):
                self.get_model().on_train_batch_end(batch, batch_idx, dataloader_idx)

        # collapse all metrics into one dict
        batch_log_metrics = {k: v for d in batch_log_metrics for k, v in d.items()}

        # track all metrics for callbacks
        if not using_results_obj:
            self.callback_metrics.update({k: v for d in batch_callback_metrics for k, v in d.items()})

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            batch_log_metrics=batch_log_metrics,
            training_step_output_for_epoch_end=batch_outputs
        )
        return result

    def run_batch_backward_pass(self, split_batch, batch_idx, opt_idx, optimizer):
        # ------------------
        # GRAD NORMS
        # ------------------
        # track gradient norms when requested
        grad_norm_dic = {}
        if batch_idx % self.row_log_interval == 0:
            if float(self.track_grad_norm) > 0:
                model = self.get_model()
                grad_norm_dic = model.grad_norm(
                    self.track_grad_norm)

        # ------------------
        # CLIP GRADS
        # ------------------
        if self.amp_backend == AMPType.NATIVE and not self.use_tpu:
            self.scaler.unscale_(optimizer)
        self.clip_gradients(optimizer)

        # ------------------
        # .STEP + ZERO_GRAD
        # ------------------
        self.call_optimizer_step(optimizer, opt_idx, batch_idx, split_batch)

        return grad_norm_dic

    def call_optimizer_step(self, optimizer, opt_idx, batch_idx, split_batch):
        # calls .step(), .zero_grad()
        # override function to modify this behavior
        model = self.get_model()

        with self.profiler.profile('optimizer_step'):
            lambda_closure = lambda: self.optimizer_closure(
                split_batch,
                batch_idx,
                opt_idx,
                optimizer,
                self.hiddens,
            ).loss

            # apply TPU optimizer
            if self.use_tpu and XLA_AVAILABLE:
                model.optimizer_step(self.current_epoch, batch_idx,
                                     optimizer, opt_idx, lambda_closure, on_tpu=True)

            # for LBFGS do something a bit different
            elif isinstance(optimizer, torch.optim.LBFGS):

                # native amp + lbfgs is a no go right now
                if self.amp_backend == AMPType.NATIVE:
                    raise MisconfigurationException(
                        'native PyTorch amp and lbfgs are not compatible.'
                        ' To request, please file a Github issue in PyTorch and tag @mcarilli')
                model.optimizer_step(self.current_epoch, batch_idx, optimizer, opt_idx, lambda_closure,
                                     using_lbfgs=True)

            # when using 16-bit
            else:
                native_amp = self.amp_backend == AMPType.NATIVE
                model.optimizer_step(self.current_epoch, batch_idx, optimizer, opt_idx, lambda_closure,
                                     using_native_amp=native_amp)

            # in native 16-bit we need to update scaler after optimizer step
            if self.amp_backend == AMPType.NATIVE and not self.use_tpu:
                self.scaler.update()

            # model hook
            model.on_before_zero_grad(optimizer)

            # clear gradients
            model.optimizer_zero_grad(self.current_epoch, batch_idx, optimizer, opt_idx)

    def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer, hiddens):
        """
        wrap the forward step in a closure so second order methods work
        """
        # ---------------------------
        # FORWARD (TRAINING STEP + TRAIN STEP END)
        # ---------------------------
        with self.profiler.profile('model_forward'):
            args = self.build_train_args(split_batch, batch_idx, opt_idx, hiddens)
            training_step_output = self.accelerator_backend.training_step(args)
            training_step_output = self.call_hook('training_step_end', training_step_output)

            # ----------------------------
            # PROCESS THE RESULT
            # ----------------------------
            # format and reduce outputs accordingly
            training_step_output_for_epoch_end = training_step_output
            is_result_obj = isinstance(training_step_output, Result)

            # track batch size for weighted average
            if is_result_obj:
                training_step_output.track_batch_size(len(split_batch))

            # don't allow EvalResult in the training_step
            if isinstance(training_step_output, EvalResult):
                raise MisconfigurationException('training_step cannot return EvalResult, '
                                                'use a dict or TrainResult instead')

            # handle regular dicts
            if not is_result_obj:
                training_step_output = self.process_output(training_step_output, train=True)

                training_step_output = AttributeDict(
                    batch_loss=training_step_output[0],
                    pbar_on_batch_end=training_step_output[1],
                    log_metrics=training_step_output[2],
                    callback_metrics=training_step_output[3],
                    hiddens=training_step_output[4],
                )

            # if the user decides to finally reduce things in epoch_end, save raw output without graphs
            if isinstance(training_step_output_for_epoch_end, torch.Tensor):
                training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach()
            elif is_result_obj:
                training_step_output_for_epoch_end = copy(training_step_output)
                training_step_output_for_epoch_end.detach()
            else:
                training_step_output_for_epoch_end = recursive_detach(training_step_output_for_epoch_end)

        # accumulate loss
        # (if accumulate_grad_batches = 1 no effect)
        closure_loss = training_step_output.minimize if is_result_obj else training_step_output.batch_loss
        closure_loss = closure_loss / self.accumulate_grad_batches

        # the loss will get scaled for amp. avoid any modifications to it
        untouched_loss = closure_loss.detach().clone()

        # backward pass
        model_ref = self.get_model()
        with self.profiler.profile('model_backward'):
            # scale loss for 16 bit
            if self.precision == 16 and not self.on_tpu:
                closure_loss = model_ref.amp_scale_loss(closure_loss, optimizer, opt_idx, amp_backend=self.amp_backend)

                # enter amp context
                if self.amp_backend == AMPType.APEX:
                    self.dev_debugger.track_event('AMP', str(AMPType.APEX))
                    context = closure_loss
                    closure_loss = closure_loss.__enter__()

            # do backward pass
            model_ref.backward(self, closure_loss, optimizer, opt_idx)

            # exit amp context
            if self.precision == 16 and self.amp_backend == AMPType.APEX and not self.on_tpu:
                a, b, c = None, None, None
                error = context.__exit__(a, b, c)
                if error:
                    rank_zero_warn(a, b, c)
                    raise Exception('apex unscale error')

            # once backward has been applied, release graph
            closure_loss = closure_loss.detach()

            if is_result_obj:
                training_step_output.detach()
            else:
                training_step_output.batch_loss = training_step_output.batch_loss.detach()

        if self.use_horovod:
            # Synchronize Horovod to ensure gradient manipulations (e.g., loss scaling) are valid
            optimizer.synchronize()

        # insert after step hook
        if self.is_function_implemented('on_after_backward'):
            model_ref = self.get_model()
            with self.profiler.profile('on_after_backward'):
                model_ref.on_after_backward()

        # when in dev debugging track the losses
        self.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach())

        result = AttributeDict(
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=training_step_output_for_epoch_end,
            hiddens=training_step_output.hiddens,
        )
        return result

    def _get_optimizers_iterable(self):
        if not self.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [(opt_idx, self.optimizers[opt_idx])]

    # @atexit.register
    def run_training_teardown(self):
        if hasattr(self, '_teardown_already_run') and self._teardown_already_run:
            return

        self._teardown_already_run = True

        # Save latest checkpoint
        log.info('Saving latest checkpoint..')
        self.check_checkpoint_callback(should_check_val=False)

        # Train end events
        with self.profiler.profile('on_train_end'):
            # callbacks
            self.on_train_end()
            # model hooks
            if self.is_function_implemented('on_train_end'):
                self.get_model().on_train_end()

        if self.logger is not None:
            self.logger.finalize("success")

        # summarize profile results
        if self.global_rank == 0:
            self.profiler.describe()

        if self.global_rank == 0:
            for proc in self.interactive_ddp_procs:
                subprocess.Popen.kill(proc)

        # clean up dist group
        if self.use_ddp or self.use_ddp2:
            torch_distrib.destroy_process_group()

        # clear mem
        if self.on_gpu:
            model = self.get_model()
            model.cpu()
            torch.cuda.empty_cache()

    def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.optimizers) > 1:
            if self.has_arg('training_step', 'optimizer_idx'):
                args.append(opt_idx)
            else:
                num_opts = len(self.optimizers)
                raise ValueError(
                    f'Your LightningModule defines {num_opts} optimizers but '
                    f'training_step is missing the "optimizer_idx" argument.'
                )

        # pass hiddens if using tbptt
        if self.truncated_bptt_steps is not None:
            args.append(hiddens)

        return args

    def update_learning_rates(self, interval: str, monitor_metrics=None):
        """Update learning rates.

        Args:
            interval: either 'epoch' or 'step'.
            monitor_metrics: dict of possible values to monitor
        """
        if not self.lr_schedulers:
            return

        for scheduler_idx, lr_scheduler in enumerate(self.lr_schedulers):
            current_idx = self.batch_idx if interval == 'step' else self.current_epoch
            current_idx += 1  # account for both batch and epoch starts from 0
            # Take step if call to update_learning_rates matches the interval key and
            # the current step modulo the schedulers frequency is zero
            if lr_scheduler['interval'] == interval and current_idx % lr_scheduler['frequency'] == 0:
                # If instance of ReduceLROnPlateau, we need to pass validation loss
                if lr_scheduler['reduce_on_plateau']:
                    monitor_key = lr_scheduler['monitor']

                    if monitor_metrics is not None:
                        monitor_val = monitor_metrics.get(monitor_key)
                    else:
                        monitor_val = self.callback_metrics.get(monitor_key)

                    if monitor_val is None:
                        avail_metrics = ','.join(list(self.callback_metrics.keys()))
                        raise MisconfigurationException(
                            f'ReduceLROnPlateau conditioned on metric {monitor_key}'
                            f' which is not available. Available metrics are: {avail_metrics}.'
                            ' Condition can be set using `monitor` key in lr scheduler dict'
                        )
                    if self.dev_debugger.enabled:
                        old_lr = lr_scheduler['scheduler'].optimizer.param_groups[0]['lr']

                    # update LR
                    lr_scheduler['scheduler'].step(monitor_val)

                    if self.dev_debugger.enabled:
                        new_lr = lr_scheduler['scheduler'].optimizer.param_groups[0]['lr']
                        self.dev_debugger.track_lr_schedulers_update(
                            self.batch_idx,
                            interval,
                            scheduler_idx,
                            old_lr,
                            new_lr,
                            monitor_key,
                        )
                else:
                    if self.dev_debugger.enabled:
                        old_lr = lr_scheduler['scheduler'].optimizer.param_groups[0]['lr']

                    # update LR
                    lr_scheduler['scheduler'].step()

                    if self.dev_debugger.enabled:
                        new_lr = lr_scheduler['scheduler'].optimizer.param_groups[0]['lr']
                        self.dev_debugger.track_lr_schedulers_update(
                            self.batch_idx,
                            interval,
                            scheduler_idx,
                            old_lr, new_lr
                        )