for i in range(len(mods)): module_path = '.'.join(mods[:i + 1]) if importlib.util.find_spec(module_path) is None: return False return True except AttributeError: return False APEX_AVAILABLE = _module_available("apex.amp") NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast") OMEGACONF_AVAILABLE = _module_available("omegaconf") HYDRA_AVAILABLE = _module_available("hydra") HOROVOD_AVAILABLE = _module_available("horovod.torch") TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists() FAIRSCALE_AVAILABLE = platform.system() != 'Windows' and _module_available('fairscale.nn.data_parallel') RPC_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.rpc') GROUP_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.group') FAIRSCALE_PIPE_AVAILABLE = FAIRSCALE_AVAILABLE and LooseVersion(torch.__version__) == LooseVersion("1.6.0") BOLTS_AVAILABLE = _module_available('pl_bolts') FLOAT16_EPSILON = numpy.finfo(numpy.float16).eps FLOAT32_EPSILON = numpy.finfo(numpy.float32).eps FLOAT64_EPSILON = numpy.finfo(numpy.float64).eps class LightningEnum(str, Enum): """ Type of any enumerator with allowed comparison to string invariant to cases. """ @classmethod
def test_tpu_device_absence(): """Check tpu_device_exists returns None when torch_xla is not available""" assert xdu.tpu_device_exists() is None
def test_tpu_device_presence(): """Check tpu_device_exists returns True when TPU is available""" assert xdu.tpu_device_exists() is True
# Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.utilities.xla_device_utils import XLADeviceUtils from tests.base.boring_model import BoringModel from tests.base.develop_utils import pl_multi_process_test @pytest.mark.skipif(not XLADeviceUtils.tpu_device_exists(), reason="test requires TPU machine") @pl_multi_process_test def test_resume_training_on_cpu(tmpdir): """ Checks if training can be resumed from a saved checkpoint on CPU""" # Train a model on TPU model = BoringModel() trainer = Trainer( checkpoint_callback=True, max_epochs=1, tpu_cores=8, ) trainer.fit(model) model_path = trainer.checkpoint_callback.best_model_path