def __init__(self, num_classes): super(UNet, self).__init__() self.backbone = mobilenet_v2(pretrained=True) self.up_convs = nn.ModuleList([ ConvNormAct(1280, 256), ConvNormAct(352, 128), ConvNormAct(160, 64) ]) self.cls_conv = nn.Conv2d(88, num_classes, 3, padding=1) initialize_weights(self.up_convs) initialize_weights(self.cls_conv)
def __init__(self, num_classes): super(UNet, self).__init__() self.stages = resnet34( pretrained=True, replace_stride_with_dilation=[False, False, True]).stages self.up_convs = nn.ModuleList([ ConvNormAct(512, 128), ConvNormAct(256, 64), ConvNormAct(128, 64) ]) self.cls_conv = nn.Conv2d(128, num_classes, 3, padding=1) initialize_weights(self.up_convs) initialize_weights(self.cls_conv)
def __init__( self, num_classes, img_size=(416, 416), anchors=[ [[116, 90], [156, 198], [373, 326]], [[30, 61], [62, 45], [59, 119]], [[10, 13], [16, 30], [33, 23]], ]): super(YOLOV3, self).__init__() self.backbone = mobilenet_v2(pretrained=True) depth = 5 width = [512, 256, 128] planes_list = [1280, 96, 32] self.spp = nn.Sequential(ConvNormAct(1280, 320, 1, activate=nn.ReLU(True)), SPP()) self.fpn = FPN(planes_list, width, depth) self.head = nn.ModuleList([]) self.yolo_layers = nn.ModuleList([]) for i in range(3): self.head.append( nn.Sequential( SeparableConvNormAct(width[i], width[i], activate=nn.ReLU(True)), nn.Conv2d(width[i], len(anchors[i]) * (6 + num_classes), 1), )) self.yolo_layers.append( YOLOLayer( anchors=np.float32(anchors[i]), nc=num_classes, img_size=img_size, yolo_index=i, )) initialize_weights(self.fpn) initialize_weights(self.head)
def __init__(self, num_classes): super(DeepLabV3Plus, self).__init__() self.backbone = resnet50( pretrained=True, replace_stride_with_dilation=[False, False, True]) self.project = ConvNormAct(256, 128, 1) self.aspp = ASPP(2048, 256, [6, 12, 18]) self.cls_conv = nn.Conv2d(384, num_classes, 3, padding=1) # init weight and bias initialize_weights(self.aspp) initialize_weights(self.project) initialize_weights(self.cls_conv)