def seresnext101_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.SEResNeXt101Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[128, 128, 256, 384], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), )
def seresnext101_fpnsum256(num_classes=5, dropout=0.0, pretrained=True): encoder = E.SEResNeXt101Encoder(pretrained=pretrained) return FPNSumSegmentationModel(encoder, num_classes=num_classes, fpn_channels=256, dropout=dropout)
def seresnext101_deeplab256(num_classes=1, dropout=0.0): encoder = E.SEResNeXt101Encoder() return DeeplabV3SegmentationModel(encoder, num_classes=num_classes, high_level_bottleneck=256, dropout=dropout)