예제 #1
0
            pretrained_dict_model = pretrained_dict['model_state_dict']
            pretrained_dict_optimizer = pretrained_dict['optimizer_state_dict']
            pretrained_dict_scheduler = pretrained_dict['scheduler_state_dict']
            pretrained_dict_model = {
                k: v
                for k, v in pretrained_dict_model.items() if k in model_dict
            }
            pretrained_dict_optimizer = {
                k: v
                for k, v in pretrained_dict_optimizer.items()
                if k in optimizer_dict
            }
            model_dict.update(pretrained_dict_model)
            optimizer_dict.update(pretrained_dict_optimizer)
            dialog_encoder.load_state_dict(model_dict)
            optimizer.load_state_dict(optimizer_dict)
            for state in optimizer.state.values():
                for k, v in state.items():
                    if isinstance(v, torch.Tensor):
                        state[k] = v.to(device)
            scheduler = WarmupLinearScheduleNonZero(optimizer, warmup_steps=10000, \
                 t_total=200000, last_epoch=pretrained_dict["iterId"])
            scheduler.load_state_dict(pretrained_dict_scheduler)
            start_iter_id = pretrained_dict['iterId']

            del pretrained_dict, pretrained_dict_model, pretrained_dict_optimizer, pretrained_dict_scheduler, \
                model_dict, optimizer_dict
            torch.cuda.empty_cache()

    num_iter_epoch = dataset.numDataPoints['train'] // (params['batch_size'] // params['sequences_per_image'] if (params['batch_size'] // params['sequences_per_image']) \
         else 1 if not params['overfit'] else 5 )
예제 #2
0
파일: main.py 프로젝트: NoOneUST/GivBERT
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--from_pretrained",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--output_dir",
        default="save",
        type=str,
        help="The output directory where the model checkpoints will be written.",
    )
    parser.add_argument(
        "--config_file",
        default="config/bert_base_6layer_6conect.json",
        type=str,
        help="The config file which specified the model details.",
    )
    parser.add_argument(
        "--num_train_epochs",
        default=20,
        type=int,
        help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--train_iter_multiplier",
        default=1.0,
        type=float,
        help="multiplier for the multi-task training.",
    )
    parser.add_argument(
        "--train_iter_gap",
        default=4,
        type=int,
        help="forward every n iteration is the validation score is not improving over the last 3 epoch, -1 means will stop",
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help="Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.",
    )
    parser.add_argument(
        "--no_cuda", action="store_true", help="Whether not to use CUDA when available"
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        type=bool,
        help="Whether to lower case the input text. True for uncased models, False for cased models.",
    )
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="local_rank for distributed training on gpus",
    )
    parser.add_argument(
        "--seed", type=int, default=0, help="random seed for initialization"
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumualte before performing a backward/update pass.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit float precision instead of 32-bit",
    )
    parser.add_argument(
        "--loss_scale",
        type=float,
        default=0,
        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=16,
        help="Number of workers in the dataloader.",
    )
    parser.add_argument(
        "--save_name", default="", type=str, help="save name for training."
    )
    parser.add_argument(
        "--in_memory",
        default=False,
        type=bool,
        help="whether use chunck for parallel training.",
    )
    parser.add_argument(
        "--optim", default="AdamW", type=str, help="what to use for the optimization."
    )
    parser.add_argument(
        "--freeze",
        default=-1,
        type=int,
        help="till which layer of textual stream of vilbert need to fixed.",
    )
    parser.add_argument(
        "--vision_scratch",
        action="store_true",
        help="whether pre-trained the image or not.",
    )
    parser.add_argument(
        "--evaluation_interval", default=1, type=int, help="evaluate very n epoch."
    )
    parser.add_argument(
        "--lr_scheduler",
        default="mannul",
        type=str,
        help="whether use learning rate scheduler.",
    )
    parser.add_argument(
        "--baseline", action="store_true", help="whether use single stream baseline."
    )
    parser.add_argument(
        "--resume_file", default="", type=str, help="Resume from checkpoint"
    )
    parser.add_argument(
        "--dynamic_attention",
        action="store_true",
        help="whether use dynamic attention.",
    )
    parser.add_argument(
        "--clean_train_sets",
        default=True,
        type=bool,
        help="whether clean train sets for multitask data.",
    )
    parser.add_argument(
        "--visual_target",
        default=0,
        type=int,
        help="which target to use for visual branch. \
        0: soft label, \
        1: regress the feature, \
        2: NCE loss.",
    )
    args = parser.parse_args()
    with open("task_config.yml", "r") as f:
        task_cfg = edict(yaml.safe_load(f))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if args.baseline:
        from pytorch_transformers.modeling_bert import BertConfig
        from src.models.basebert import BaseBertForVLTasks
    else:
        from src.models.vilbert import BertConfig
        from src.models.vilbert import VILBertForVLTasks

    name = task_cfg["name"]
    task_lr = task_cfg["lr"]

    base_lr = task_lr
    loss_scale = task_lr / base_lr

    if args.save_name:
        prefix = "-" + args.save_name
    else:
        prefix = ""
    timeStamp = (
        args.config_file.split("/")[1].split(".")[0]
        + prefix
    )
    savePath = os.path.join(args.output_dir, timeStamp)

    bert_weight_name = json.load(
        open("config/" + args.bert_model + "_weight_name.json", "r")
    )

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
        )
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        torch.distributed.init_process_group(backend="nccl")

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
            device, n_gpu, bool(args.local_rank != -1), args.fp16
        )
    )

    default_gpu = False
    if dist.is_available() and args.local_rank != -1:
        rank = dist.get_rank()
        if rank == 0:
            default_gpu = True
    else:
        default_gpu = True

    if default_gpu:
        if not os.path.exists(savePath):
            os.makedirs(savePath)

    config = BertConfig.from_json_file(args.config_file)
    if default_gpu:
        # save all the hidden parameters.
        with open(os.path.join(savePath, "command.txt"), "w") as f:
            print(args, file=f)  # Python 3.x
            print("\n", file=f)
            print(config, file=f)

    # load dataset
    task_batch_size, task_num_iters, task_datasets_train, task_datasets_val, task_dataloader_train, task_dataloader_val = LoadDatasets(
        args, task_cfg
    )

    logdir = os.path.join(savePath, "logs")
    tbLogger = utils.tbLogger(
        logdir,
        savePath,
        task_num_iters,
        args.gradient_accumulation_steps,
    )

    if args.visual_target == 0:
        config.v_target_size = 1601
        config.visual_target = args.visual_target
    else:
        config.v_target_size = 2048
        config.visual_target = args.visual_target

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_ave_iter = {}
    task_stop_controller = {}
    task_ave_iter = int(
        task_cfg["num_epoch"]
        * task_num_iters
        * args.train_iter_multiplier
        / args.num_train_epochs
    )
    task_stop_controller = utils.TaskStopOnPlateau(
        mode="max",
        patience=1,
        continue_threshold=0.005,
        cooldown=1,
        threshold=0.001,
    )

    median_num_iter = task_ave_iter
    num_train_optimization_steps = (
        median_num_iter * args.num_train_epochs // args.gradient_accumulation_steps
    )
    num_labels = task_datasets_train.num_labels

    if args.dynamic_attention:
        config.dynamic_attention = True

    model = VILBertForVLTasks.from_pretrained(
        args.from_pretrained,
        config=config,
        num_labels=num_labels,
        default_gpu=default_gpu,
    )

    task_losses = LoadLosses(args, task_cfg)

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]

    if args.freeze != -1:
        bert_weight_name_filtered = []
        for name in bert_weight_name:
            if "embeddings" in name:
                bert_weight_name_filtered.append(name)
            elif "encoder" in name:
                layer_num = name.split(".")[2]
                if int(layer_num) <= args.freeze:
                    bert_weight_name_filtered.append(name)

        optimizer_grouped_parameters = []
        for key, value in dict(model.named_parameters()).items():
            if key[12:] in bert_weight_name_filtered:
                value.requires_grad = False

        if default_gpu:
            print("filtered weight")
            print(bert_weight_name_filtered)

    optimizer_grouped_parameters = []
    for key, value in dict(model.named_parameters()).items():
        if value.requires_grad:
            if "vil_" in key:
                lr = 1e-4
            else:
                if args.vision_scratch:
                    if key[12:] in bert_weight_name:
                        lr = base_lr
                    else:
                        lr = 1e-4
                else:
                    lr = base_lr
            if any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [
                    {"params": [value], "lr": lr, "weight_decay": 0.0}
                ]
            if not any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [
                    {"params": [value], "lr": lr, "weight_decay": 0.01}
                ]

    if default_gpu:
        print(len(list(model.named_parameters())), len(optimizer_grouped_parameters))

    # choose optimizer
    if args.optim == "AdamW":
        optimizer = AdamW(optimizer_grouped_parameters, lr=base_lr, correct_bias=False)
    elif args.optim == "RAdam":
        optimizer = RAdam(optimizer_grouped_parameters, lr=base_lr)

    # choose scheduler
    warmpu_steps = args.warmup_proportion * num_train_optimization_steps

    if args.lr_scheduler == "warmup_linear":
        warmup_scheduler = WarmupLinearSchedule(
            optimizer, warmup_steps=warmpu_steps, t_total=num_train_optimization_steps
        )
    else:
        warmup_scheduler = WarmupConstantSchedule(optimizer, warmup_steps=warmpu_steps)

    lr_reduce_list = np.array([5, 7])
    if args.lr_scheduler == "automatic":
        lr_scheduler = ReduceLROnPlateau(
            optimizer, mode="max", factor=0.2, patience=1, cooldown=1, threshold=0.001
        )
    elif args.lr_scheduler == "cosine":
        lr_scheduler = CosineAnnealingLR(
            optimizer, T_max=median_num_iter * args.num_train_epochs
        )
    elif args.lr_scheduler == "cosine_warm":
        lr_scheduler = CosineAnnealingWarmRestarts(
            optimizer, T_0=median_num_iter * args.num_train_epochs
        )
    elif args.lr_scheduler == "mannul":

        def lr_lambda_fun(epoch):
            return pow(0.2, np.sum(lr_reduce_list <= epoch))

        lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun)

    startIterID = 0
    global_step = 0
    start_epoch = 0

    if args.resume_file != "" and os.path.exists(args.resume_file):
        checkpoint = torch.load(args.resume_file, map_location="cpu")
        new_dict = {}
        for attr in checkpoint["model_state_dict"]:
            if attr.startswith("module."):
                new_dict[attr.replace("module.", "", 1)] = checkpoint[
                    "model_state_dict"
                ][attr]
            else:
                new_dict[attr] = checkpoint["model_state_dict"][attr]
        model.load_state_dict(new_dict)
        warmup_scheduler.load_state_dict(checkpoint["warmup_scheduler_state_dict"])
        # lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        global_step = checkpoint["global_step"]
        start_epoch = int(checkpoint["epoch_id"]) + 1
        task_stop_controller = checkpoint["task_stop_controller"]
        tbLogger = checkpoint["tb_logger"]
        del checkpoint

    model.to(device)

    print("`==============`MODEL=============")
    print(next(model.parameters()).is_cuda)#False

    for state in optimizer.state.values():
        for k, v in state.items():
            if torch.is_tensor(v):
                state[k] = v.cuda()

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model, delay_allreduce=True)

    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if default_gpu:
        print("***** Running training *****")
        print("  Num Iters: ", task_num_iters)
        print("  Batch size: ", task_batch_size)
        print("  Num steps: %d" % num_train_optimization_steps)

    task_iter_train = None
    task_count = 0
    for epochId in tqdm(range(start_epoch, args.num_train_epochs), desc="Epoch", ncols=100):
        model.train()
        for step in range(median_num_iter):
            iterId = startIterID + step + (epochId * median_num_iter)
            first_task = True

            is_forward = False
            if (not task_stop_controller.in_stop) or (
                iterId % args.train_iter_gap == 0
            ):
                is_forward = True

            if is_forward:
                loss, score = ForwardModelsTrain(
                    args,
                    task_cfg,
                    device,
                    task_count,
                    task_iter_train,
                    task_dataloader_train,
                    model,
                    task_losses,
                )

                loss = loss * loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion,
                        )
                        for param_group in optimizer.param_groups:
                            param_group["lr"] = lr_this_step

                    if first_task and (
                        global_step < warmpu_steps
                        or args.lr_scheduler == "warmup_linear"
                    ):
                        warmup_scheduler.step()

                    optimizer.step()
                    model.zero_grad()
                    if first_task:
                        global_step += 1
                        first_task = False

                    if default_gpu:
                        tbLogger.step_train(
                            epochId,
                            iterId,
                            float(loss),
                            float(score),
                            optimizer.param_groups[0]["lr"],
                            "train",
                        )

            if "cosine" in args.lr_scheduler and global_step > warmpu_steps:
                lr_scheduler.step()

            if (
                step % (20 * args.gradient_accumulation_steps) == 0
                and step != 0
                and default_gpu
            ):
                tbLogger.showLossTrain()

            # decided whether to evaluate on SNLI tasks.
            if (iterId != 0 and iterId % task_num_iters == 0) or (
                epochId == args.num_train_epochs - 1 and step == median_num_iter - 1
            ):
                evaluate(
                    args,
                    task_dataloader_val,
                    task_stop_controller,
                    task_cfg,
                    device,
                    model,
                    task_losses,
                    epochId,
                    default_gpu,
                    tbLogger,
                )

        if args.lr_scheduler == "automatic":
            lr_scheduler.step(sum(val_scores.values()))
            logger.info("best average score is %3f" % lr_scheduler.best)
        elif args.lr_scheduler == "mannul":
            lr_scheduler.step()

        if epochId in lr_reduce_list:
            # reset the task_stop_controller once the lr drop
            task_stop_controller._reset()

        if default_gpu:
            # Save a trained model
            logger.info("** ** * Saving fine - tuned model ** ** * ")
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Only save the model it-self
            output_model_file = os.path.join(
                savePath, "pytorch_model_" + str(epochId) + ".bin"
            )
            output_checkpoint = os.path.join(savePath, "pytorch_ckpt_latest.tar")
            torch.save(model_to_save.state_dict(), output_model_file)
            torch.save(
                {
                    "model_state_dict": model_to_save.state_dict(),
                    "optimizer_state_dict": optimizer.state_dict(),
                    "warmup_scheduler_state_dict": warmup_scheduler.state_dict(),
                    # 'lr_scheduler_state_dict': lr_scheduler.state_dict(),
                    "global_step": global_step,
                    "epoch_id": epochId,
                    "task_stop_controller": task_stop_controller,
                    "tb_logger": tbLogger,
                },
                output_checkpoint,
            )
    tbLogger.txt_close()
def main():
    # os.environ['C UDA_VISIBLE_DEVICES'] = "0,1"
    batch_size = 64
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--from_pretrained",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--output_dir",
        default="save",
        type=str,
        help=
        "The output directory where the model checkpoints will be written.",
    )
    parser.add_argument(
        "--config_file",
        default="config/bert_base_6layer_6conect.json",
        type=str,
        help="The config file which specified the model details.",
    )
    parser.add_argument(
        "--num_train_epochs",
        default=20,
        type=int,
        help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--train_iter_multiplier",
        default=1.0,
        type=float,
        help="multiplier for the multi-task training.",
    )
    parser.add_argument(
        "--train_iter_gap",
        default=4,
        type=int,
        help=
        "forward every n iteration is the validation score is not improving over the last 3 epoch, -1 means will stop",
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        type=bool,
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models.",
    )
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="local_rank for distributed training on gpus",
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="random seed for initialization")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit float precision instead of 32-bit",
    )
    parser.add_argument(
        "--loss_scale",
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=16,
        help="Number of workers in the dataloader.",
    )
    parser.add_argument("--save_name",
                        default="",
                        type=str,
                        help="save name for training.")
    parser.add_argument(
        "--in_memory",
        default=False,
        type=bool,
        help="whether use chunck for parallel training.",
    )
    parser.add_argument("--optim",
                        default="AdamW",
                        type=str,
                        help="what to use for the optimization.")
    parser.add_argument("--tasks",
                        default="0",
                        type=str,
                        help="discourse : TASK0")
    parser.add_argument(
        "--freeze",
        default=-1,
        type=int,
        help="till which layer of textual stream of vilbert need to fixed.",
    )
    parser.add_argument(
        "--vision_scratch",
        action="store_true",
        help="whether pre-trained the image or not.",
    )
    parser.add_argument("--evaluation_interval",
                        default=1,
                        type=int,
                        help="evaluate very n epoch.")
    parser.add_argument(
        "--lr_scheduler",
        default="mannul",
        type=str,
        help="whether use learning rate scheduler.",
    )
    parser.add_argument("--baseline",
                        action="store_true",
                        help="whether use single stream baseline.")
    parser.add_argument("--resume_file",
                        default="",
                        type=str,
                        help="Resume from checkpoint")
    parser.add_argument(
        "--dynamic_attention",
        action="store_true",
        help="whether use dynamic attention.",
    )
    parser.add_argument(
        "--clean_train_sets",
        default=True,
        type=bool,
        help="whether clean train sets for multitask data.",
    )
    parser.add_argument(
        "--visual_target",
        default=0,
        type=int,
        help="which target to use for visual branch. \
        0: soft label, \
        1: regress the feature, \
        2: NCE loss.",
    )
    parser.add_argument(
        "--task_specific_tokens",
        action="store_true",
        default=False,
        help="whether to use task specific tokens for the multi-task learning.",
    )

    # todo
    args = parser.parse_args()
    with open("vilbert_tasks.yml", "r") as f:
        task_cfg = edict(yaml.safe_load(f))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    if args.baseline:
        from pytorch_transformers.modeling_bert import BertConfig
        from vilbert.basebert import BaseBertForVLTasks
    else:
        from vilbert.vilbert import BertConfig
        from vilbert.vilbert import VILBertForVLTasks

    task_names = []
    task_lr = []
    task_id = 1
    for i, task_id in enumerate(args.tasks.split("-")):
        task_id = str(1)
        task = "TASK" + task_id
        name = task_cfg[task]["name"]
        task_names.append(name)
        task_lr.append(task_cfg[task]["lr"])
    base_lr = min(task_lr)
    loss_scale = {}
    for i, task_id in enumerate(args.tasks.split("-")):
        task = "TASK" + task_id
        loss_scale[task] = task_lr[i] / base_lr

    if args.save_name:
        prefix = "-" + args.save_name
    else:
        prefix = ""
    timeStamp = ("-".join("discourse") + "_" +
                 args.config_file.split("/")[1].split(".")[0] + prefix)
    savePath = os.path.join(args.output_dir, timeStamp)

    bert_weight_name = json.load(
        open("config/" + args.bert_model + "_weight_name.json", "r"))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        torch.distributed.init_process_group(backend="nccl")

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    default_gpu = False
    if dist.is_available() and args.local_rank != -1:
        rank = dist.get_rank()
        if rank == 0:
            default_gpu = True
    else:
        default_gpu = True

    if default_gpu:
        if not os.path.exists(savePath):
            os.makedirs(savePath)

    config = BertConfig.from_json_file(args.config_file)
    if default_gpu:
        # save all the hidden parameters.
        with open(os.path.join(savePath, "command.txt"), "w") as f:
            print(args, file=f)  # Python 3.x
            print("\n", file=f)
            print(config, file=f)

    # task_batch_size, task_num_iters, task_ids, task_datasets_train, task_datasets_val, task_dataloader_train, task_dataloader_val = LoadDatasets(
    #     args, task_cfg, args.tasks.split("-"),'train'
    # )
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    labels = [
        "Visible", 'Subjective', 'Action', 'Story', 'Meta', 'Irrelevant',
        'Other'
    ]
    train_dataset = DiscourseRelationDataset(
        labels,
        task_cfg[task]["dataroot"],
        tokenizer,
        args.bert_model,
        task_cfg[task]["max_seq_length"],
        encoding="utf-8",
        visual_target=0,
        batch_size=batch_size,
        shuffle=False,
        num_workers=4,
        cache=5000,
        drop_last=False,
        cuda=False,
        objective=0,
        visualization=False,
    )

    train_sampler = RandomSampler(train_dataset)

    train_loader = DataLoader(
        train_dataset,
        sampler=train_sampler,
        batch_size=batch_size,
        num_workers=0,
        pin_memory=True,
    )
    # for i in train_loader:
    #     print("hello")
    # todo task_ids , task_num_tiers
    task_ids = ['TASK0']
    task_num_iters = [100]
    task_batch_size = task_cfg['TASK0']["batch_size"]

    print("task_batch_size")
    print(task_batch_size)
    logdir = os.path.join(savePath, "logs")
    tbLogger = utils.tbLogger(
        logdir,
        savePath,
        task_names,
        task_ids,
        task_num_iters,
        args.gradient_accumulation_steps,
    )

    if args.visual_target == 0:
        config.v_target_size = 1601
        config.visual_target = args.visual_target
    else:
        config.v_target_size = 2048
        config.visual_target = args.visual_target

    if args.task_specific_tokens:
        print("*********** config.task_specific_tokens = True ************")
        config.task_specific_tokens = True

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_ave_iter = {}
    task_stop_controller = {}
    # for task_id, num_iter in task_num_iters.items():
    #     task_ave_iter[task_id] = int(
    #         task_cfg[task]["num_epoch"]
    #         * num_iter
    #         * args.train_iter_multiplier
    #         / args.num_train_epochs
    #     )
    #     task_stop_controller[task_id] = utils.MultiTaskStopOnPlateau(
    #         mode="max",
    #         patience=1,
    #         continue_threshold=0.005,
    #         cooldown=1,
    #         threshold=0.001,
    #     )

    # task_ave_iter_list = sorted(task_ave_iter.values())
    # median_num_iter = task_ave_iter_list[-1]
    # num_train_optimization_steps = (
    #     median_num_iter * args.num_train_epochs // args.gradient_accumulation_steps
    # )
    # num_labels = max([dataset.num_labels for dataset in task_datasets_train.values()])

    # num_train_optimization_steps = int(
    #     train_dataset.num_dataset
    #     / task_batch_size
    #     / args.gradient_accumulation_steps
    # ) * (args.num_train_epochs - args.start_epoch)

    # num_train_optimization_steps = int(
    #     train_dataset.num_dataset
    #     / task_batch_size
    #     / args.gradient_accumulation_steps
    # ) * (args.num_train_epochs - args.start_epoch)
    num_train_optimization_steps = 10
    num_labels = len(labels)
    if args.dynamic_attention:
        config.dynamic_attention = True
    if "roberta" in args.bert_model:
        config.model = "roberta"

    if args.baseline:
        model = BaseBertForVLTasks.from_pretrained(
            args.from_pretrained,
            config=config,
            num_labels=num_labels,
            default_gpu=default_gpu,
        )
    else:
        model = VILBertForVLTasks.from_pretrained(
            args.from_pretrained,
            config=config,
            num_labels=num_labels,
            default_gpu=default_gpu,
        )
    model.double()
    model = model.to(device)
    task_losses = LoadLosses(args, task_cfg, args.tasks.split("-"))

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]

    if args.freeze != -1:
        bert_weight_name_filtered = []
        for name in bert_weight_name:
            if "embeddings" in name:
                bert_weight_name_filtered.append(name)
            elif "encoder" in name:
                layer_num = name.split(".")[2]
                if int(layer_num) <= args.freeze:
                    bert_weight_name_filtered.append(name)

        optimizer_grouped_parameters = []
        for key, value in dict(model.named_parameters()).items():
            if key[12:] in bert_weight_name_filtered:
                value.requires_grad = False

        if default_gpu:
            print("filtered weight")
            print(bert_weight_name_filtered)

    optimizer_grouped_parameters = []
    for key, value in dict(model.named_parameters()).items():
        if value.requires_grad:
            if "vil_" in key:
                lr = 1e-4
            else:
                if args.vision_scratch:
                    if key[12:] in bert_weight_name:
                        lr = base_lr
                    else:
                        lr = 1e-4
                else:
                    lr = base_lr
            if any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [{
                    "params": [value],
                    "lr": lr,
                    "weight_decay": 0.0
                }]
            if not any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [{
                    "params": [value],
                    "lr": lr,
                    "weight_decay": 0.01
                }]

    if default_gpu:
        print(len(list(model.named_parameters())),
              len(optimizer_grouped_parameters))

    if args.optim == "AdamW":
        optimizer = AdamW(optimizer_grouped_parameters,
                          lr=base_lr,
                          correct_bias=False,
                          weight_decay=1e-4)
    elif args.optim == "RAdam":
        optimizer = RAdam(optimizer_grouped_parameters,
                          lr=base_lr,
                          weight_decay=1e-4)

    # warmpu_steps = args.warmup_proportion * num_train_optimization_steps

    # if args.lr_scheduler == "warmup_linear":
    #     warmup_scheduler = WarmupLinearSchedule(
    #         optimizer, warmup_steps=warmpu_steps, t_total=num_train_optimization_steps
    #     )
    # else:
    #     warmup_scheduler = WarmupConstantSchedule(optimizer, warmup_steps=warmpu_steps)
    #
    # lr_reduce_list = np.array([5, 7])
    # if args.lr_scheduler == "automatic":
    #     lr_scheduler = ReduceLROnPlateau(
    #         optimizer, mode="max", factor=0.2, patience=1, cooldown=1, threshold=0.001
    #     )
    # elif args.lr_scheduler == "cosine":
    #     lr_scheduler = CosineAnnealingLR(
    #         optimizer, T_max=median_num_iter * args.num_train_epochs
    #     )
    # elif args.lr_scheduler == "cosine_warm":
    #     lr_scheduler = CosineAnnealingWarmRestarts(
    #         # optimizer, T_0=median_num_iter * args.num_train_epochs
    #     )
    # elif args.lr_scheduler == "mannul":
    #
    #     def lr_lambda_fun(epoch):
    #         return pow(0.2, np.sum(lr_reduce_list <= epoch))
    #
    #     lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun)

    startIterID = 0
    global_step = 0
    start_epoch = 0

    if args.resume_file != "" and os.path.exists(args.resume_file):
        checkpoint = torch.load(args.resume_file, map_location="cpu")
        new_dict = {}
        for attr in checkpoint["model_state_dict"]:
            if attr.startswith("module."):
                new_dict[attr.replace(
                    "module.", "", 1)] = checkpoint["model_state_dict"][attr]
            else:
                new_dict[attr] = checkpoint["model_state_dict"][attr]
        model.load_state_dict(new_dict)
        # warmup_scheduler.load_state_dict(checkpoint["warmup_scheduler_state_dict"])
        # lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        global_step = checkpoint["global_step"]
        start_epoch = int(checkpoint["epoch_id"]) + 1
        task_stop_controller = checkpoint["task_stop_controller"]
        tbLogger = checkpoint["tb_logger"]
        del checkpoint

    model.to(device)

    for state in optimizer.state.values():
        for k, v in state.items():
            if torch.is_tensor(v):
                state[k] = v.cuda()

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model, delay_allreduce=True)

    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if default_gpu:
        print("***** Running training *****")
        print("  Num Iters: ", task_num_iters)
        print("  Batch size: ", batch_size)
        print("  Num steps: %d" % num_train_optimization_steps)

    task_iter_train = {name: None for name in task_ids}
    task_count = {name: 0 for name in task_ids}
    # for epochId in tqdm(range(start_epoch, args.num_train_epochs), desc="Epoch"):
    #     model.train()
    #     torch.autograd.set_detect_anomaly(True)
    #     # for step in range(median_num_iter):
    #     for step in range(1)
    #         # iterId = startIterID + step + (epochId * median_num_iter)
    #         first_task = True
    #         for task_id in task_ids:
    #             is_forward = False
    #             # if (not task_stop_controller[task_id].in_stop) or (
    #             #     iterId % args.train_iter_gap == 0
    #             # ):
    # args['start_epoch'] = 0
    # args.num_train_epochs
    criterion = nn.BCEWithLogitsLoss()
    target_path = os.path.join(task_cfg[task]["dataroot"],
                               "all_targets_json.json")
    all_targets = json.load(open(target_path, "r"))
    model = model.to(device)
    print(next(model.parameters()).is_cuda)
    for epochId in range(int(start_epoch), int(args.num_train_epochs)):
        model.train()
        is_forward = True

        if is_forward:
            # print("beforeLoop")

            # loss, score = ForwardModelsTrain(
            #     args,
            #     task_cfg,
            #     device,
            #     task_id,
            #     task_count,
            #     task_iter_train,
            #     train_dataset,
            #     model,
            #     task_losses,
            # )

            for step, batch in enumerate(train_loader):
                batch = tuple(
                    t.to(device=device, non_blocking=True) if type(t) ==
                    torch.Tensor else t for t in batch)
                input_ids, input_mask, segment_ids, image_feat, image_loc, image_mask, image_id = (
                    batch)
                true_targets = []
                for id in image_id:
                    true_targets.append(
                        np.fromiter(all_targets[id].values(), dtype=np.double))
                true_targets = torch.from_numpy(np.array(true_targets))
                true_targets = true_targets.to(device)
                model.double()
                model = model.to(device)
                discourse_prediction, vil_prediction, vil_prediction_gqa, vil_logit, vil_binary_prediction, vil_tri_prediction, vision_prediction, vision_logit, linguisic_prediction, linguisic_logit, _ \
                    = model(
                    True,
                    input_ids,
                    image_feat,
                    image_loc,
                    segment_ids,
                    input_mask,
                    image_mask
                )
                loss = criterion(discourse_prediction,
                                 true_targets.type(torch.double))
                loss.backward()
                optimizer.step()
                model.zero_grad()
                print("train train train done")
            #

            print("*********** ITERATION {}  ***********".format(epochId))
            print("*********** TRAIN PERFORMANCE ***********")
            print(loss)
            print(
                compute_score(discourse_prediction.to('cpu'),
                              true_targets.type(torch.float).to('cpu'), 0.5))
            print("*********** TEST PERFORMANCE ***********")
            evaluate(model, device, task_cfg, tokenizer, args, labels)