def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTDoubleHeadsModel(config) model.eval() loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, lm_labels=input_ids) result = {"loss": loss, "lm_logits": lm_logits} self.parent.assertListEqual(list(result["loss"].size()), []) self.parent.assertListEqual( list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])
def __init__(self, opt, shared=None): super(TransformerAgent, self).__init__(opt, shared) args = AttrDict(opt) # to keep most commands identical to the interact.py script self.args = args logging.basicConfig(level=logging.INFO) self.logger = logging.getLogger(__file__) self.logger.info(pformat(args)) random.seed(args.seed) torch.random.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) if shared is None: self.logger.info("Get pretrained model and tokenizer") if args.model_checkpoint == "": args.model_checkpoint = download_pretrained_model() self.tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_checkpoint) if self.args.eval_type == "hits@1": self.model_checkpoint = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_checkpoint) else: self.model_checkpoint = OpenAIGPTLMHeadModel.from_pretrained(args.model_checkpoint) self.model_checkpoint.to(args.device) self.model_checkpoint.eval() self.logger.info("Build BPE prefix dictionary") convai_dict = build_dict() assert len(convai_dict) == 19304 self.prefix2words = self.get_prefix2words(convai_dict) else: self.model_checkpoint = shared['model'] self.tokenizer = shared['tokenizer'] self.prefix2words = shared['prefix2words'] self.special_tokens_ids = self.tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS) self.persona = [] self.history = [] self.labels = [] self.reset()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--model_name', type=str, default='openai-gpt', help='pretrained model name') parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument('--train_dataset', type=str, default='') parser.add_argument('--eval_dataset', type=str, default='') parser.add_argument('--seed', type=int, default=42) parser.add_argument('--num_train_epochs', type=int, default=3) parser.add_argument('--train_batch_size', type=int, default=8) parser.add_argument('--eval_batch_size', type=int, default=16) parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument('--max_grad_norm', type=int, default=1) parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training \ steps to perform. Override num_train_epochs.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before\ performing a backward/update pass.") parser.add_argument('--learning_rate', type=float, default=6.25e-5) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--lr_schedule', type=str, default='warmup_linear') parser.add_argument('--weight_decay', type=float, default=0.01) parser.add_argument('--lm_coef', type=float, default=0.9) parser.add_argument('--n_valid', type=int, default=374) parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() print(args) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(device, n_gpu)) if not args.do_train and not args.do_eval: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset special_tokens = ['_start_', '_delimiter_', '_classify_'] tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_special_tokens({ 'cls_token': '<CLS>', 'sep_token': '<SEP>', 'pad_token': '<PAD>', 'eos_token': '<EOS>' }) model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(tokenizer)) special_tokens_ids = [ tokenizer.convert_tokens_to_ids(special_token) for special_token in ['<PAD>', '<CLS>', '<SEP>', '<EOS>'] ] model.to(device) # Load and encode the datasets if not args.train_dataset and not args.eval_dataset: roc_stories = cached_path(ROCSTORIES_URL) def tokenize_and_encode(obj): """ Tokenize and encode a nested object """ if isinstance(obj, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) elif isinstance(obj, int): return obj return list(tokenize_and_encode(o) for o in obj) logger.info("Encoding dataset...") train_dataset = load_rocstories_dataset(args.train_dataset) eval_dataset = load_rocstories_dataset(args.eval_dataset) datasets = (train_dataset, eval_dataset) encoded_datasets = tokenize_and_encode(datasets) # Compute the max input length for the Transformer max_length = model.config.n_positions // 2 - 2 input_length = max(len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3 \ for dataset in encoded_datasets for story, cont1, cont2, _ in dataset) input_length = min(input_length, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids) train_tensor_dataset, eval_tensor_dataset = tensor_datasets[ 0], tensor_datasets[1] train_data = TensorDataset(*train_tensor_dataset) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) eval_data = TensorDataset(*eval_tensor_dataset) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps //\ (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader)\ // args.gradient_accumulation_steps * args.num_train_epochs param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': args.weight_decay }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) if args.do_train: nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_steps = 0 tqdm_bar = tqdm(train_dataloader, desc="Training") for step, batch in enumerate(tqdm_bar): batch = tuple(t.to(device) for t in batch) input_ids, mc_token_ids, lm_labels, mc_labels = batch losses = model(input_ids, mc_token_ids, lm_labels, mc_labels) loss = args.lm_coef * losses[0] + losses[1] loss.backward() scheduler.step() optimizer.step() optimizer.zero_grad() tr_loss += loss.item() exp_average_loss = loss.item( ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item( ) nb_tr_steps += 1 tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format( exp_average_loss, scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) tokenizer = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(device) if args.do_eval: model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(device) for t in batch) input_ids, mc_token_ids, lm_labels, mc_labels = batch with torch.no_grad(): _, mc_loss, _, mc_logits = model(input_ids, mc_token_ids, lm_labels, mc_labels) mc_logits = mc_logits.detach().cpu().numpy() mc_labels = mc_labels.to('cpu').numpy() tmp_eval_accuracy = accuracy(mc_logits, mc_labels) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples train_loss = tr_loss / nb_tr_steps if args.do_train else None result = { 'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss } output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key])))
""" Tokenize and encode a nested object """ if isinstance(obj, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) elif isinstance(obj, int): return obj return list(tokenize_and_encode(o) for o in obj) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` special_tokens = ['_start_', '_delimiter_', '_classify_'] tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens) special_tokens_ids = list( tokenizer.convert_tokens_to_ids(token) for token in special_tokens) model = OpenAIGPTDoubleHeadsModel.from_pretrained( args.model_name, num_special_tokens=len(special_tokens)) model.to(device) # Load Snli dataset with pkl path_train = args.data_path + "snli_1.0_train.txt" path_test = args.data_path + "snli_1.0_test.txt" path_dev = args.data_path + "snli_1.0_dev.txt" pkl_path = 'data_in/snli.pkl' if os.path.exists(pkl_path): with open(pkl_path, 'rb') as f: encoded_datasets = pickle.load(f) logger.info("load completed") else: train_dataset = load_snli_dataset(path_train) dev_dataset = load_snli_dataset(path_dev)