예제 #1
0
    def __init__(self,
                 biort='farras',
                 qshift='qshift_a',
                 J=3,
                 mode='symmetric'):
        super().__init__()
        self.biort = biort
        self.qshift = qshift
        self.J = J

        if isinstance(biort, str):
            biort = _level1(biort)
        assert len(biort) == 8
        h0a1, h0b1, _, _, h1a1, h1b1, _, _ = biort
        DWTaa1 = DWTForward(J=1, wave=(h0a1, h1a1, h0a1, h1a1), mode=mode)
        DWTab1 = DWTForward(J=1, wave=(h0a1, h1a1, h0b1, h1b1), mode=mode)
        DWTba1 = DWTForward(J=1, wave=(h0b1, h1b1, h0a1, h1a1), mode=mode)
        DWTbb1 = DWTForward(J=1, wave=(h0b1, h1b1, h0b1, h1b1), mode=mode)
        self.level1 = nn.ModuleList([DWTaa1, DWTab1, DWTba1, DWTbb1])

        if J > 1:
            if isinstance(qshift, str):
                qshift = _qshift(qshift)
            assert len(qshift) == 8
            h0a, h0b, _, _, h1a, h1b, _, _ = qshift
            DWTaa = DWTForward(J - 1, (h0a, h1a, h0a, h1a), mode=mode)
            DWTab = DWTForward(J - 1, (h0a, h1a, h0b, h1b), mode=mode)
            DWTba = DWTForward(J - 1, (h0b, h1b, h0a, h1a), mode=mode)
            DWTbb = DWTForward(J - 1, (h0b, h1b, h0b, h1b), mode=mode)
            self.level2 = nn.ModuleList([DWTaa, DWTab, DWTba, DWTbb])
예제 #2
0
def icplxdual2D(yl, yh, level1='farras', qshift='qshift_a', mode='periodization'):
    # Get the filters
    _, _, g0a1, g0b1, _, _, g1a1, g1b1 = _level1(level1)
    _, _, g0a, g0b, _, _, g1a, g1b = _qshift(qshift)

    dev = yl[0][0].device
    Faf = ((prep_filt_sfb2d(g0a1, g1a1, g0a1, g1a1, device=dev),
            prep_filt_sfb2d(g0a1, g1a1, g0b1, g1b1, device=dev)),
           (prep_filt_sfb2d(g0b1, g1b1, g0a1, g1a1, device=dev),
            prep_filt_sfb2d(g0b1, g1b1, g0b1, g1b1, device=dev)))
    af = ((prep_filt_sfb2d(g0a, g1a, g0a, g1a, device=dev),
           prep_filt_sfb2d(g0a, g1a, g0b, g1b, device=dev)),
          (prep_filt_sfb2d(g0b, g1b, g0a, g1a, device=dev),
           prep_filt_sfb2d(g0b, g1b, g0b, g1b, device=dev)))

    # Convert the highs back to subbands
    J = len(yh)
    w = [[[[None for i in range(3)] for j in range(2)] for k in range(2)] for l in range(J)]
    for j in range(J):
        w[j][0][0][0], w[j][1][1][0] = pm(yh[j][:,2,:,:,:,0],
                                          yh[j][:,3,:,:,:,1])
        w[j][0][1][0], w[j][1][0][0] = pm(yh[j][:,3,:,:,:,0],
                                          yh[j][:,2,:,:,:,1])
        w[j][0][0][1], w[j][1][1][1] = pm(yh[j][:,0,:,:,:,0],
                                          yh[j][:,5,:,:,:,1])
        w[j][0][1][1], w[j][1][0][1] = pm(yh[j][:,5,:,:,:,0],
                                          yh[j][:,0,:,:,:,1])
        w[j][0][0][2], w[j][1][1][2] = pm(yh[j][:,1,:,:,:,0],
                                          yh[j][:,4,:,:,:,1])
        w[j][0][1][2], w[j][1][0][2] = pm(yh[j][:,4,:,:,:,0],
                                          yh[j][:,1,:,:,:,1])
        w[j][0][0] = torch.stack(w[j][0][0], dim=2)
        w[j][0][1] = torch.stack(w[j][0][1], dim=2)
        w[j][1][0] = torch.stack(w[j][1][0], dim=2)
        w[j][1][1] = torch.stack(w[j][1][1], dim=2)

    y = None
    for m in range(2):
        for n in range(2):
            lo = yl[m][n]
            for j in range(J-1, 0, -1):
                lo = sfb2d(lo, w[j][m][n], af[m][n], mode=mode)
            lo = sfb2d(lo, w[0][m][n], Faf[m][n], mode=mode)

            # Add to the output
            if y is None:
                y = lo
            else:
                y = y + lo

    # Normalize
    y = y/2
    return y
예제 #3
0
    def __init__(self, biort='farras', qshift='qshift_a', mode='symmetric'):
        super().__init__()
        self.biort = biort
        self.qshift = qshift

        if isinstance(biort, str):
            biort = _level1(biort)
        assert len(biort) == 8
        _, _, g0a1, g0b1, _, _, g1a1, g1b1 = biort
        IWTaa1 = DWTInverse(wave=(g0a1, g1a1, g0a1, g1a1), mode=mode)
        IWTab1 = DWTInverse(wave=(g0a1, g1a1, g0b1, g1b1), mode=mode)
        IWTba1 = DWTInverse(wave=(g0b1, g1b1, g0a1, g1a1), mode=mode)
        IWTbb1 = DWTInverse(wave=(g0b1, g1b1, g0b1, g1b1), mode=mode)
        self.level1 = nn.ModuleList([IWTaa1, IWTab1, IWTba1, IWTbb1])

        if isinstance(qshift, str):
            qshift = _qshift(qshift)
        assert len(qshift) == 8
        _, _, g0a, g0b, _, _, g1a, g1b = qshift
        IWTaa = DWTInverse(wave=(g0a, g1a, g0a, g1a), mode=mode)
        IWTab = DWTInverse(wave=(g0a, g1a, g0b, g1b), mode=mode)
        IWTba = DWTInverse(wave=(g0b, g1b, g0a, g1a), mode=mode)
        IWTbb = DWTInverse(wave=(g0b, g1b, g0b, g1b), mode=mode)
        self.level2 = nn.ModuleList([IWTaa, IWTab, IWTba, IWTbb])
예제 #4
0
def cplxdual2D(x,
               J,
               level1='farras',
               qshift='qshift_a',
               mode='periodization',
               mag=False):
    """ Do a complex dtcwt

    Returns:
        lows: lowpass outputs from each of the 4 trees. Is a 2x2 list of lists
        w: bandpass outputs from each of the 4 trees. Is a list of lists, with
        shape [J][2][2][3]. Initially the 3 outputs are the lh, hl and hh from
        each of the 4 trees. After doing sums and differences though, they
        become the real and imaginary parts for the 6 orientations. In
        particular:
            first index - indexes over scales
            second index - 0 = real, 1 = imaginary
            third and fourth indices:
            0,1 = 15 degrees
            1,2 = 45 degrees
            0,0 = 75 degrees
            1,0 = 105 degrees
            0,2 = 135 degrees
            1,1 = 165 degrees
    """
    x = x / 2
    # Get the filters
    h0a1, h0b1, _, _, h1a1, h1b1, _, _ = _level1(level1)
    h0a, h0b, _, _, h1a, h1b, _, _ = _qshift(qshift)

    Faf = ((prep_filt_afb2d(h0a1, h1a1, h0a1, h1a1, device=x.device),
            prep_filt_afb2d(h0a1, h1a1, h0b1, h1b1, device=x.device)),
           (prep_filt_afb2d(h0b1, h1b1, h0a1, h1a1, device=x.device),
            prep_filt_afb2d(h0b1, h1b1, h0b1, h1b1, device=x.device)))
    af = ((prep_filt_afb2d(h0a, h1a, h0a, h1a, device=x.device),
           prep_filt_afb2d(h0a, h1a, h0b, h1b, device=x.device)),
          (prep_filt_afb2d(h0b, h1b, h0a, h1a, device=x.device),
           prep_filt_afb2d(h0b, h1b, h0b, h1b, device=x.device)))

    # Do 4 fully decimated dwts
    w = [[[None for _ in range(2)] for _ in range(2)] for j in range(J)]
    lows = [[None for _ in range(2)] for _ in range(2)]
    for m in range(2):
        for n in range(2):
            # Do the first level transform with the first level filters
            #  ll, bands = afb2d(x, (Faf[m][0], Faf[m][1], Faf[n][0], Faf[n][1]), mode=mode)
            bands = afb2d(x, Faf[m][n], mode=mode)
            # Separate the low and bandpasses
            s = bands.shape
            bands = bands.reshape(s[0], -1, 4, s[-2], s[-1])
            ll = bands[:, :, 0].contiguous()
            w[0][m][n] = [bands[:, :, 2], bands[:, :, 1], bands[:, :, 3]]

            # Do the second+ level transform with the second level filters
            for j in range(1, J):
                #  ll, bands = afb2d(ll, (af[m][0], af[m][1], af[n][0], af[n][1]), mode=mode)
                bands = afb2d(ll, af[m][n], mode=mode)
                # Separate the low and bandpasses
                s = bands.shape
                bands = bands.reshape(s[0], -1, 4, s[-2], s[-1])
                ll = bands[:, :, 0].contiguous()
                w[j][m][n] = [bands[:, :, 2], bands[:, :, 1], bands[:, :, 3]]
            lows[m][n] = ll

    # Convert the quads into real and imaginary parts
    yh = [
        None,
    ] * J
    for j in range(J):
        deg75r, deg105i = pm(w[j][0][0][0], w[j][1][1][0])
        deg105r, deg75i = pm(w[j][0][1][0], w[j][1][0][0])
        deg15r, deg165i = pm(w[j][0][0][1], w[j][1][1][1])
        deg165r, deg15i = pm(w[j][0][1][1], w[j][1][0][1])
        deg135r, deg45i = pm(w[j][0][0][2], w[j][1][1][2])
        deg45r, deg135i = pm(w[j][0][1][2], w[j][1][0][2])
        yhr = torch.stack((deg15r, deg45r, deg75r, deg105r, deg135r, deg165r),
                          dim=1)
        yhi = torch.stack((deg15i, deg45i, deg75i, deg105i, deg135i, deg165i),
                          dim=1)
        if mag:
            yh[j] = torch.sqrt(yhr**2 + yhi**2 + 0.01) - np.sqrt(0.01)
        else:
            yh[j] = torch.stack((yhr, yhi), dim=-1)

    return lows, yh