예제 #1
0
def test_poisson_no_intercept():
    """Tests the Poisson fitter with no intercept."""
    n_features = 3
    n_samples = 10000

    # create data
    X, y, beta, _ = make_poisson_regression(n_samples=n_samples,
                                            n_features=n_features,
                                            n_informative=n_features,
                                            beta=np.array([0.5, 1.0, 1.5]),
                                            random_state=2332)

    # lbfgs
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=False,
                      solver='lbfgs', max_iter=5000)
    poisson.fit(X, y)
    assert_allclose(poisson.coef_, beta, rtol=0.5)

    # coordinate descent
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=False, solver='cd',
                      max_iter=5000)
    poisson.fit(X, y)
    assert_allclose(poisson.coef_, beta, rtol=0.5)

    # broken solver
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=False, solver='ruff',
                      max_iter=5000)
    assert_raises(ValueError, poisson.fit, X, y)
예제 #2
0
def test_fit():
    """Test the entire fitting procedure for the Poisson GLM."""

    # compare after 50 iterations
    poisson = Poisson(max_iter=50, fit_intercept=False)
    poisson.fit(X, y, init=0.5 * np.ones(beta.size))
    beta_new_true = np.array([
        -3.865910169523823, 6.243915946623266, -0.728804736275411,
        -0.463706073765083, -3.622620769371424
    ])

    assert np.allclose(beta_new_true, poisson.coef_)
예제 #3
0
def test_score_predictions():
    """Test the score predictions function in UoI Poisson."""
    X = np.array([[np.log(2), -1, -3],
                  [np.log(3), -2, -4],
                  [np.log(4), -3, -5],
                  [np.log(5), -4, -6]])
    y = 1. / np.log([2., 3., 4., 5.])
    support = np.array([True, False, False])
    n_samples = y.size

    # create fitter by hand
    fitter = Poisson()
    fitter.coef_ = np.array([1])
    fitter.intercept_ = 0

    uoi_fitter = UoI_Poisson()

    # test log-likelihood
    ll = uoi_fitter._score_predictions(
        metric='log',
        fitter=fitter,
        X=X, y=y, support=support)
    assert_allclose(ll, -2.5)

    # test information criteria
    total_ll = ll * n_samples
    aic = uoi_fitter._score_predictions(
        metric='AIC',
        fitter=fitter,
        X=X, y=y, support=support)

    assert_allclose(aic, 2 * total_ll - 2)

    aicc = uoi_fitter._score_predictions(
        metric='AICc',
        fitter=fitter,
        X=X, y=y, support=support)
    assert_allclose(aicc, aic - 2)

    bic = uoi_fitter._score_predictions(
        metric='BIC',
        fitter=fitter,
        X=X, y=y, support=support)
    assert_allclose(bic, 2 * total_ll - np.log(y.size))

    # test invalid metric
    assert_raises(ValueError,
                  uoi_fitter._score_predictions,
                  'fake',
                  fitter,
                  X, y, support)
예제 #4
0
def test_cd_sweep():
    """Test one pass through the coordinate sweep function."""

    poisson = Poisson(fit_intercept=False)

    w, z = Poisson.adjusted_response(X, y, beta)
    active_idx = np.argwhere(beta != 0).ravel()
    beta_new, intercept_new = poisson.cd_sweep(beta, X, w, z, active_idx)

    beta_new_true = np.array(
        [2.922553187460584, 0.909849302128083, 0, -1.850644198436912, 0])

    assert np.allclose(beta_new_true, beta_new)
    assert intercept_new == 0
예제 #5
0
def test_poisson_with_sparsity():
    """Tests the Poisson fitter with no intercept."""
    n_features = 3
    n_samples = 10000

    # create data
    X, y, beta, _ = make_poisson_regression(n_samples=n_samples,
                                            n_features=n_features,
                                            n_informative=n_features,
                                            beta=np.array([0., 1.0, 1.5]),
                                            random_state=2332)

    # lbfgs
    poisson = Poisson(alpha=0.1, l1_ratio=1., fit_intercept=False,
                      solver='lbfgs', max_iter=5000)
    poisson.fit(X, y)

    assert_equal(np.abs(poisson.coef_[0]), 0)

    # coordinate descent
    poisson = Poisson(alpha=0.1, l1_ratio=1., fit_intercept=False, solver='cd',
                      max_iter=5000)
    poisson.fit(X, y)

    assert_equal(np.abs(poisson.coef_[0]), 0.)
예제 #6
0
def test_poisson_with_intercept():
    """Tests the Poisson fitter with no intercept."""
    n_features = 3
    n_samples = 10000

    # create data
    X, y, beta, intercept = make_poisson_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_informative=n_features,
        beta=np.array([0.5, 1.0, 1.5]),
        include_intercept=True,
        random_state=2332)

    # lbfgs
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=True,
                      solver='lbfgs', max_iter=5000)
    poisson.fit(X, y)

    assert_allclose(poisson.coef_, beta, rtol=0.5)
    assert_allclose(poisson.intercept_, intercept, rtol=0.5)

    # coordinate descent
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=True, solver='cd',
                      max_iter=5000)
    poisson.fit(X, y)

    assert_allclose(poisson.coef_, beta, rtol=0.5)
    assert_allclose(poisson.intercept_, intercept, rtol=0.5)
예제 #7
0
def test_poisson_reg_params():
    """Test whether the upper bound on the regularization parameters correctly
    zero out the coefficients."""
    n_features = 5
    n_samples = 1000

    X, y, beta, intercept = make_poisson_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_informative=n_features,
        random_state=2332)

    alpha_sets = [np.array([0.5]), np.array([1.0])]

    for alpha_set in alpha_sets:
        uoi_poisson = UoI_Poisson(alphas=alpha_set)
        reg_params = uoi_poisson.get_reg_params(X, y)
        alpha = reg_params[0]['alpha']
        l1_ratio = reg_params[0]['l1_ratio']

        # check that coefficients get set to zero
        poisson = Poisson(alpha=1.01 * alpha,
                          l1_ratio=l1_ratio,
                          standardize=False,
                          fit_intercept=True)
        poisson.fit(X, y)
        assert_equal(poisson.coef_, 0.)

        # check that coefficients below the bound are not set to zero
        poisson = Poisson(alpha=0.99 * alpha,
                          l1_ratio=l1_ratio,
                          standardize=False,
                          fit_intercept=True)
        poisson.fit(X, y)
        assert np.count_nonzero(poisson.coef_) > 0
예제 #8
0
def test_poisson_standardize():
    """Tests the Poisson fitter `standardize=True`."""
    n_features = 3
    n_samples = 200

    # create data
    X, y, beta, intercept = make_poisson_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_informative=n_features,
        beta=np.array([0.5, 1.0, 1.5]),
        include_intercept=True,
        random_state=2332)

    # lbfgs
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=True,
                      solver='lbfgs', standardize=True)
    poisson.fit(X, y)
예제 #9
0
def test_predict():
    """Test the predict function in the Poisson class"""
    # design matrix
    X = np.array([[np.log(2.5), -1, -3], [np.log(3.5), -2, -4],
                  [np.log(4.5), -3, -5], [np.log(5.5), -4, -6]])

    poisson = Poisson()

    # test for NotFittedError
    assert_raises(NotFittedError, poisson.predict, X)

    # create "fit"
    poisson.coef_ = np.array([1, 0, 0])
    poisson.intercept_ = 0
    y_pred = poisson.predict(X)
    y_mode = np.array([2, 3, 4, 5])

    # test for predict
    assert_almost_equal(y_pred, y_mode)
예제 #10
0
def test_soft_threshold():
    """Tests the soft threshold function against equivalent output from a
    MATLAB implementation."""

    true_threshold = np.array([[0, 0.34, 0.45, 0.27, 0.38], [0, 0.26, 0, 0, 0],
                               [0, 0, 0, 0.32, 0], [0.23, 0.43, 0, 0.27, 0.22],
                               [0.19, 0.38, 0, 0.04, 0], [0, 0, 0.05, 0, 0],
                               [0, 0, 0.0, 0, 0.24], [0.44, 0, 0.47, 0, 0],
                               [0.11, 0.05, 0.22, 0, 0], [0.04, 0, 0.48, 0,
                                                          0]])

    assert np.allclose(true_threshold, Poisson.soft_threshold(X, 0.5))
예제 #11
0
def test_adjusted_response():
    """Tests the adjusted response function against equivalent output from a
    MATLAB implementation."""

    w, z = Poisson.adjusted_response(X, y, beta)

    w_true = np.array([
        1.419067548593257, 6.488296399286710, 0.990049833749168,
        4.854955811237434, 6.488296399286709, 2.054433210643888,
        1.537257523548281, 17.115765537145876, 7.099327065156633,
        3.706173712210199])

    z_true = np.array([
        0.759376179437427, 1.794741970890788, -1.01,
        1.403900392819534, 1.794741970890788, 1.180256767879915,
        -0.57, 2.774810655432013, 2.086867367368360,
        2.198740394692808])

    assert_allclose(w_true, w)
    assert_allclose(z_true, z)
예제 #12
0
def test_Poisson_response_constant():
    """Test that UoI Poisson correctly fits the data when the response variable
    is constant."""
    n_features = 5
    n_samples = 100

    X = np.random.normal(size=(n_samples, n_features))
    y = np.zeros(n_samples)

    poisson = Poisson()
    poisson.fit(X, y)

    assert_equal(poisson.intercept_, -np.inf)
    assert_equal(poisson.coef_, np.zeros(n_features))

    y += 1.
    poisson.fit(X, y)

    assert_equal(poisson.intercept_, 0.)
    assert_equal(poisson.coef_, np.zeros(n_features))
예제 #13
0
def test_poisson_warm_start():
    """Tests if the warm start initializes coefficients correctly."""
    n_features = 3
    n_samples = 10000

    # create data
    X, y, beta, _ = make_poisson_regression(n_samples=n_samples,
                                            n_features=n_features,
                                            n_informative=n_features,
                                            beta=np.array([0.5, 1.0, 1.5]),
                                            random_state=2332)

    # lbfgs
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=False,
                      solver='lbfgs', max_iter=5000, warm_start=True)
    poisson.fit(X, y)
    first_coef = poisson.coef_

    poisson.coef_ = np.zeros(n_features)
    poisson.fit(X, y)
    second_coef = poisson.coef_

    assert_allclose(first_coef, second_coef, rtol=0.1)

    # cd
    poisson = Poisson(alpha=0., l1_ratio=0., fit_intercept=False,
                      solver='cd', max_iter=5000, warm_start=True)
    poisson.fit(X, y)
    first_coef = poisson.coef_

    poisson.coef_ = np.zeros(n_features)
    poisson.fit(X, y)
    second_coef = poisson.coef_

    assert_allclose(first_coef, second_coef, rtol=0.1)