def concat(self, *argv): n = 0 ls = [] while n < len(argv): if isinstance(argv[n], pd.core.series.Series): if len(ls) <= 1: ls = argv[n].to_list() else: ls0 = argv[n].to_list() ls1 = fn.aplist(ls, ls0) ls = ls1 n = n + 1 nc = str(self.mdf.shape[1] + 1) df1 = fn.add_col_df(self.mdf, nc) df1[nc] = np.array(ls) self.mdf = df1
def map_df_dic(self, dic, refcol): nc = str(self.mdf.shape[1] + 1) df = fn.add_col_df(self.mdf, nc) df[nc] = df[refcol].map(dic) self.mdf = df
def left(self, sdf, i): df1 = fn.add_col_df(self.mdf, 'left_apply') df1['left_apply'] = sdf.apply(lambda x: x[0:i]) self.mdf = df1
def right(self, sdf, i): df1 = fn.add_col_df(self.mdf, 'right_apply') df1['right_apply'] = sdf.apply(lambda x: x[-i:len(x)]) self.mdf = df1
n = n + 1 nc = str(self.mdf.shape[1] + 1) df1 = fn.add_col_df(self.mdf, nc) df1[nc] = np.array(ls) self.mdf = df1 def conv_datatype(self, colname, typ): if typ == 'date': self.mdf[colname] = pd.to_datetime(self.mdf[colname], errors='coerce') elif typ == 'int': print('x') elif typ == 'str': self.mdf[colname] = self.mdf[colname].applymap(str) #ob = vbloop(df1) #ob.left(df1['Item Type'],5) #ob.right(df1['Item Type'],3) #ob.concat(df1['Item Type'],df1['Unit Price']) print(df0.columns) df = fn.add_col_df(df0, 'OM') list_of_cols_as_ref = ['Region', 'Country', 'Item Type'] df['OM'] = df[list_of_cols_as_ref].apply(lambda x: ''.join(map(str, x)), axis=1) print(df) #df[st] = df[list_of_cols_as_ref].apply(lambda x: ''.join(map(str,x)),axis=1) #print(ob.getdf()) ## dL = fn.left (df1, df1['Item Type'], 3) ## dR = fn.right (df1, ddd = fn.right (df1, df1['Item Type'], 3)f1['Item Type'], 3)