def run_bias_sub(metadata, prev_suffix, curr_suffix, method='sub', **args): full_obs_list = get_full_obs_list(metadata) sci_obs_list = get_sci_obs_list(metadata) std_obs_list = get_std_obs_list(metadata) sky_obs_list = get_sky_obs_list(metadata) for fn in full_obs_list: in_fn = '%s%s.p%s.fits' % (out_dir, fn, prev_suffix) out_fn = '%s%s.p%s.fits' % (out_dir, fn, curr_suffix) if skip_done and os.path.isfile(out_fn): continue # figure out which bias to subtract local_biases = get_associated_calib(metadata,fn, 'bias') if local_biases: local_bias_fn = get_associated_calib(metadata,fn,'bias')[0] local_superbias = '%s%s.fits' % (out_dir, local_bias_fn+'.lsb') bias_fit_fn = '%s%s.fits' % (out_dir, local_bias_fn+'.lsb_fit') bias_type = 'local' else: bias_fit_fn = superbias_fit_fn bias_type = 'global' # subtract it! print 'Subtracting %s superbias for %s' % ( bias_type, in_fn.split('/')[-1]) if method == 'copy': pywifes.imcopy(in_fn, out_fn) else: pywifes.imarith(in_fn, '-', bias_fit_fn, out_fn, data_hdu=my_data_hdu) return
def run_bias_sub(metadata, prev_suffix, curr_suffix, method='sub', **args): full_obs_list = get_full_obs_list(metadata) sci_obs_list = get_sci_obs_list(metadata) std_obs_list = get_std_obs_list(metadata) sky_obs_list = get_sky_obs_list(metadata) for fn in full_obs_list: in_fn = os.path.join(out_dir, '%s.p%s.fits' % (fn, prev_suffix)) out_fn = os.path.join(out_dir, '%s.p%s.fits' % (fn, curr_suffix)) if skip_done and os.path.isfile(out_fn): continue # figure out which bias to subtract local_biases = get_associated_calib(metadata,fn, 'bias') if local_biases: local_bias_fn = get_associated_calib(metadata,fn,'bias')[0] local_superbias = os.path.join(out_dir, '%s.fits' % (local_bias_fn+'.lsb')) bias_fit_fn = os.path.join(out_dir, '%s.fits' % (local_bias_fn+'.lsb_fit')) bias_type = 'local' else: bias_fit_fn = superbias_fit_fn bias_type = 'global' # subtract it! print('Subtracting %s superbias for %s'%(bias_type, in_fn.split('/')[-1])) if method == 'copy': pywifes.imcopy(in_fn, out_fn) else: pywifes.imarith(in_fn, '-', bias_fit_fn, out_fn, data_hdu=my_data_hdu) return
# figure out which bias to subtract local_biases = get_associated_calib(metadata,fn, 'bias') if local_biases: local_bias_fn = get_associated_calib(metadata,fn,'bias')[0] local_superbias = os.path.join(out_dir, '%s.fits' % (local_bias_fn+'.lsb')) bias_fit_fn = os.path.join(out_dir, '%s.fits' % (local_bias_fn+'.lsb_fit')) bias_type = 'local' else: bias_fit_fn = superbias_fit_fn bias_type = 'global' # subtract it! print('Subtracting %s superbias for %s'%(bias_type, in_fn.split('/')[-1])) if method == 'copy': pywifes.imcopy(in_fn, out_fn) else: pywifes.imarith(in_fn, '-', bias_fit_fn, out_fn, data_hdu=my_data_hdu) return #------------------------------------------------------ # Generate super-flat def run_superflat(metadata, prev_suffix, curr_suffix, source, scale=None, method='median'): if source == 'dome': flat_list = [ os.path.join(out_dir, '%s.p%s.fits' % (x, prev_suffix)) for x in metadata['domeflat']] out_fn = super_dflat_raw elif source == 'twi': flat_list = [ os.path.join(out_dir, '%s.p%s.fits' % (x, prev_suffix)) for x in metadata['twiflat']]