def test_make_bivariate_histogram(self): x, y = np.ones((100, 100)), np.ones((100, 100)) make_bivariate_histogram( x_position=x, y_position=y, histogram_range=None, masked=None, bins=200, spatial_std=3, )
def test_single_negative_x(self): size = 100 x, y = -np.ones(size), np.zeros(size) s = make_bivariate_histogram(x, y) hist_iX = s.axes_manager[0].value2index(-1) hist_iY = s.axes_manager[1].value2index(0) assert s.data[hist_iY, hist_iX] == size s.data[hist_iY, hist_iX] = 0 assert not s.data.any()
def get_bivariate_histogram(self, histogram_range=None, masked=None, bins=200, spatial_std=3): """ Useful for finding the distribution of magnetic vectors(?). Parameters ---------- histogram_range : tuple, optional Set the minimum and maximum of the histogram range. Default is setting it automatically. masked : 2-D NumPy bool array, optional Mask parts of the data. The array must be the same size as the signal. The True values are masked. Default is not masking anything. bins : integer, default 200 Number of bins in the histogram spatial_std : number, optional If histogram_range is not given, this value will be used to set the automatic histogram range. Default value is 3. Returns ------- s_hist : HyperSpy Signal2D Examples -------- >>> s = ps.dummy_data.get_stripe_pattern_dpc_signal() >>> s_hist = s.get_bivariate_histogram() >>> s_hist.plot() """ x_position = self.inav[0].data y_position = self.inav[1].data s_hist = make_bivariate_histogram( x_position, y_position, histogram_range=histogram_range, masked=masked, bins=bins, spatial_std=spatial_std, ) s_hist.metadata.General.title = "Bivariate histogram of {0}".format( self.metadata.General.title) return s_hist
def get_bivariate_histogram(self, histogram_range=None, masked=None, bins=200, spatial_std=3): """ Useful for finding the distribution of magnetic vectors(?). Parameters ---------- histogram_range : tuple, optional Set the minimum and maximum of the histogram range. Default is setting it automatically. masked : 1-D NumPy bool array, optional Mask parts of the data. The array must be the same size as the signal. The True values are masked. Default is not masking anything. bins : integer, default 200 Number of bins in the histogram spatial_std : number, optional If histogram_range is not given, this value will be used to set the automatic histogram range. Default value is 3. Returns ------- s_hist : Signal2D """ x_position = self.inav[0].data y_position = self.inav[1].data s_hist = make_bivariate_histogram( x_position, y_position, histogram_range=histogram_range, masked=masked, bins=bins, spatial_std=spatial_std, ) return s_hist