from emcee import PTSampler
import mkl
mkl.set_num_threads(1)
import time
from pztel_constants import constants
from datetime import datetime,date
#import jdcal
import pdb
#from orbitclass import orbit
import matplotlib.pyplot as plt
import pickle as pickle 
from scipy.integrate import odeint
from RK4_energy import *
G = 4.*np.pi**2.

parallax,distance,mstar,kgauss, AU, DAY = constants()

savename = '/big_scr7/dryan/pztelmc/pztel_cart_reproc1'
#savename = 'cart_test2'
filename = 'data_pztel_reproc.csv'

eps=(np.genfromtxt(filename, skip_header=1,delimiter=',', usecols=0, unpack=True)).T.ravel()
x=(np.genfromtxt(filename, skip_header=1,delimiter=',', usecols=7, unpack=True)).T.ravel()/1000
y=(np.genfromtxt(filename, skip_header=1,delimiter=',', usecols=8, unpack=True)).T.ravel()/1000
sigx=(np.genfromtxt(filename, skip_header=1,delimiter=',', usecols=9, unpack=True)).T.ravel()/1000
sigy=(np.genfromtxt(filename, skip_header=1,delimiter=',', usecols=10, unpack=True)).T.ravel()/1000
eps=eps[x == x]/365.2425
sigx=sigx[x==x]
sigy=sigy[x==x]
y=y[x==x]
x=x[x==x]
예제 #2
0
def koe(epochs, a, tau, argp, lan, inc, ecc, mass, para):

    # Epochs in MJD
    #
    # date twice but x & y are computed.
    # The data are returned so that the values in the array
    # alternate x and y pairs.
    #
    # Stellar properties for beta Pic

    parallax, distance, mstar, kgauss, AU, DAY = constants()
    mstar = mass

    parallax = para
    distance = 1. / parallax
    ndate = len(epochs)

    # Keplerian Elements
    #
    # epochs      dates in modified JD [day]
    # a           semimajor axis [au]
    # tau         epoch of peri in units of the orbital period
    # argp        argument of peri [radians]
    # lan         longitude of ascending node [radians]
    # inc         inclination [radians]
    # ecc         eccentricity
    #
    # Derived quantities
    # manom   --- mean anomaly
    # eccanom --- eccentric anomaly
    # truan   --- true anomaly
    # theta   --- longitude
    # radius  --- star-planet separation

    n = kgauss * np.sqrt(mstar) * (a)**(-1.5)  # compute mean motion in rad/day

    # ---------------------------------------
    # Compute the anomalies (all in radians)
    #
    # manom = n * (epochs - tau) # mean anomaly

    manom = n * epochs[
        0::2] - 2 * np.pi * tau  # Mean anomaly w/tau in units of period

    eccanom = np.array([])

    for man in manom:
        #print man #DEBUGGING
        eccanom = np.append(eccanom, ema(man % (2 * np.pi), ecc))

    # ---------------------------------------
    # compute the true  anomaly and the radius
    #
    # Elliptical orbit only

    truan = 2. * np.arctan(
        np.sqrt((1.0 + ecc) / (1.0 - ecc)) * np.tan(0.5 * eccanom))
    theta = truan + argp
    radius = a * (1.0 - ecc * np.cos(eccanom))

    # ---------------------------------------
    # Compute the vector components in
    # ecliptic cartesian coordinates (normal convention Green Eq. 7.7)
    # standard form
    #
    #xp = radius *(np.cos(theta)*np.cos(lan) - np.sin(theta)*np.sin(lan)*np.cos(inc))
    #yp = radius *(np.cos(theta)*np.sin(lan) + np.sin(theta)*np.cos(lan)*np.cos(inc))
    #
    # write in terms of \Omega +/- omega --- see Mathematica notebook trig-id.nb

    c2i2 = np.cos(0.5 * inc)**2
    s2i2 = np.sin(0.5 * inc)**2

    arg0 = truan + lan
    arg1 = truan + argp + lan
    arg2 = truan + argp - lan
    arg3 = truan - lan

    c1 = np.cos(arg1)
    c2 = np.cos(arg2)
    s1 = np.sin(arg1)
    s2 = np.sin(arg2)

    sa0 = np.sin(arg0)
    sa3 = np.sin(arg3)

    # updated sign convention for Green Eq. 19.4-19.7

    xp = radius * (c2i2 * s1 - s2i2 * s2)
    yp = radius * (c2i2 * c1 + s2i2 * c2)

    # Interleave x & y
    # put x data in odd elements and y data in even elements

    data = np.zeros(ndate)
    data[0::2] = xp
    data[1::2] = yp

    return data * parallax  # results in seconds of arc