def test_sum_instantiator(): """Test use of Sum instantiator.""" i = IdxSym('i') j = IdxSym('j') ket_i = BasisKet(FockIndex(i), hs=0) ket_j = BasisKet(FockIndex(j), hs=0) A_i = OperatorSymbol(StrLabel(IndexedBase('A')[i]), hs=0) hs0 = LocalSpace('0') sum = Sum(i)(ket_i) ful = KetIndexedSum(ket_i, ranges=IndexOverFockSpace(i, hs=hs0)) assert sum == ful assert sum == Sum(i, hs0)(ket_i) assert sum == Sum(i, hs=hs0)(ket_i) sum = Sum(i, 1, 10)(ket_i) ful = KetIndexedSum(ket_i, ranges=IndexOverRange(i, 1, 10)) assert sum == ful assert sum == Sum(i, 1, 10, 1)(ket_i) assert sum == Sum(i, 1, to=10, step=1)(ket_i) assert sum == Sum(i, 1, 10, step=1)(ket_i) sum = Sum(i, (1, 2, 3))(ket_i) ful = KetIndexedSum(ket_i, ranges=IndexOverList(i, (1, 2, 3))) assert sum == KetIndexedSum(ket_i, ranges=IndexOverList(i, (1, 2, 3))) assert sum == Sum(i, [1, 2, 3])(ket_i) sum = Sum(i)(Sum(j)(ket_i * ket_j.dag())) ful = OperatorIndexedSum( ket_i * ket_j.dag(), ranges=(IndexOverFockSpace(i, hs0), IndexOverFockSpace(j, hs0)), ) assert sum == ful
def test_unicode_ket_operations(): """Test the unicode representation of ket operations""" hs1 = LocalSpace('q_1', basis=('g', 'e')) hs2 = LocalSpace('q_2', basis=('g', 'e')) ket_g1 = BasisKet('g', hs=hs1) ket_e1 = BasisKet('e', hs=hs1) ket_g2 = BasisKet('g', hs=hs2) ket_e2 = BasisKet('e', hs=hs2) psi1 = KetSymbol("Psi_1", hs=hs1) psi2 = KetSymbol("Psi_2", hs=hs1) phi = KetSymbol("Phi", hs=hs2) A = OperatorSymbol("A_0", hs=hs1) gamma = symbols('gamma', positive=True) alpha = symbols('alpha') beta = symbols('beta') phase = exp(-I * gamma) i = IdxSym('i') assert unicode(psi1 + psi2) == '|Ψ₁⟩^(q₁) + |Ψ₂⟩^(q₁)' assert unicode(psi1 * phi) == '|Ψ₁⟩^(q₁) ⊗ |Φ⟩^(q₂)' assert unicode(phase * psi1) == 'exp(-ⅈ γ) |Ψ₁⟩^(q₁)' assert unicode((alpha + 1) * KetSymbol('Psi', hs=0)) == '(α + 1) |Ψ⟩⁽⁰⁾' assert (unicode( A * psi1) == 'A\u0302_0^(q\u2081) |\u03a8\u2081\u27e9^(q\u2081)') # Â_0^(q₁) |Ψ₁⟩^(q₁) assert unicode(BraKet(psi1, psi2)) == '⟨Ψ₁|Ψ₂⟩^(q₁)' expr = BraKet(KetSymbol('Psi_1', alpha, hs=hs1), KetSymbol('Psi_2', beta, hs=hs1)) assert unicode(expr) == '⟨Ψ₁(α)|Ψ₂(β)⟩^(q₁)' assert unicode(ket_e1.dag() * ket_e1) == '1' assert unicode(ket_g1.dag() * ket_e1) == '0' assert unicode(KetBra(psi1, psi2)) == '|Ψ₁⟩⟨Ψ₂|^(q₁)' expr = KetBra(KetSymbol('Psi_1', alpha, hs=hs1), KetSymbol('Psi_2', beta, hs=hs1)) assert unicode(expr) == '|Ψ₁(α)⟩⟨Ψ₂(β)|^(q₁)' bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2) bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2) assert unicode(bell1) == '1/√2 (|eg⟩^(q₁⊗q₂) - ⅈ |ge⟩^(q₁⊗q₂))' assert (unicode(BraKet.create( bell1, bell2)) == r'1/2 (⟨eg|^(q₁⊗q₂) + ⅈ ⟨ge|^(q₁⊗q₂)) (|ee⟩^(q₁⊗q₂) - ' r'|gg⟩^(q₁⊗q₂))') assert (unicode(KetBra.create( bell1, bell2)) == r'1/2 (|eg⟩^(q₁⊗q₂) - ⅈ |ge⟩^(q₁⊗q₂))(⟨ee|^(q₁⊗q₂) - ' r'⟨gg|^(q₁⊗q₂))') assert (unicode( KetBra.create(bell1, bell2), show_hs_label=False) == r'1/2 (|eg⟩ - ⅈ |ge⟩)(⟨ee| - ⟨gg|)') expr = KetBra(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0)) assert unicode(expr) == "|Ψ⟩⟨i|⁽⁰⁾" expr = KetBra(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0)) assert unicode(expr) == "|i⟩⟨Ψ|⁽⁰⁾" expr = BraKet(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0)) assert unicode(expr) == "⟨Ψ|i⟩⁽⁰⁾" expr = BraKet(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0)) assert unicode(expr) == "⟨i|Ψ⟩⁽⁰⁾"
def test_operator_kronecker_sum(): """Test that Kronecker delta are eliminiated from indexed sums over operators""" i = IdxSym('i') j = IdxSym('j') alpha = symbols('alpha') delta_ij = KroneckerDelta(i, j) delta_0i = KroneckerDelta(0, i) delta_1j = KroneckerDelta(1, j) delta_0j = KroneckerDelta(0, j) delta_1i = KroneckerDelta(1, i) def A(i, j): return OperatorSymbol(StrLabel(IndexedBase('A')[i, j]), hs=0) term = delta_ij * A(i, j) sum = OperatorIndexedSum.create(term, ranges=(IndexOverList(i, (1, 2)), IndexOverList(j, (1, 2)))) assert sum == OperatorIndexedSum.create(A(i, i), ranges=(IndexOverList(i, (1, 2)), )) assert sum.doit() == (OperatorSymbol("A_11", hs=0) + OperatorSymbol("A_22", hs=0)) term = alpha * delta_ij * A(i, j) range_i = IndexOverList(i, (1, 2)) range_j = IndexOverList(j, (1, 2)) sum = OperatorIndexedSum.create(term, ranges=(range_i, range_j)) assert isinstance(sum, ScalarTimesOperator) expected = alpha * OperatorIndexedSum.create( A(i, i), ranges=(IndexOverList(i, (1, 2)), )) assert sum == expected hs = LocalSpace('0', basis=('g', 'e')) i_range = IndexOverFockSpace(i, hs) j_range = IndexOverFockSpace(j, hs) sig_ij = LocalSigma(FockIndex(i), FockIndex(j), hs=hs) sig_0j = LocalSigma('g', FockIndex(j), hs=hs) sig_i1 = LocalSigma(FockIndex(i), 'e', hs=hs) term = delta_0i * delta_1j * sig_ij sum = OperatorIndexedSum.create(term, ranges=(i_range, )) expected = delta_1j * sig_0j assert sum == expected sum = OperatorIndexedSum.create(term, ranges=(j_range, )) expected = delta_0i * sig_i1 assert sum == expected term = (delta_0i * delta_1j + delta_0j * delta_1i) * sig_ij sum = OperatorIndexedSum.create(term, ranges=(i_range, j_range)) expected = LocalSigma('g', 'e', hs=hs) + LocalSigma('e', 'g', hs=hs) assert sum == expected
def test_qubit_state_bra(): """Test sum_i alpha_i <i| for TLS""" i = IdxSym('i') alpha = IndexedBase('alpha') alpha_i = alpha[i] hs_tls = LocalSpace('tls', basis=('g', 'e')) term = alpha_i * BasisKet(FockIndex(i), hs=hs_tls).dag() expr = KetIndexedSum.create(term, ranges=IndexOverFockSpace(i, hs=hs_tls)) assert IndexOverFockSpace(i, hs=hs_tls) in expr.ket.kwargs['ranges'] assert ascii(expr) == "Sum_{i in H_tls} alpha_i * <i|^(tls)" assert expr.ket.term.free_symbols == set([i, symbols('alpha'), alpha_i]) assert expr.free_symbols == set([symbols('alpha'), alpha_i]) assert expr.ket.variables == [i] assert expr.space == hs_tls assert len(expr.ket.args) == 1 assert len(expr.ket.operands) == 1 assert len(expr.ket.kwargs) == 1 assert expr.ket.args[0] == term.ket assert expr.ket.term == term.ket assert len(expr.kwargs) == 0 expr_expand = Bra.create(expr.ket.doit().substitute({ alpha[0]: alpha['g'], alpha[1]: alpha['e'] })) assert expr_expand == (alpha['g'] * BasisKet('g', hs=hs_tls).dag() + alpha['e'] * BasisKet('e', hs=hs_tls).dag()) assert ascii(expr_expand) == 'alpha_e * <e|^(tls) + alpha_g * <g|^(tls)'
def test_create_on_fock_expansion(): """Test ``Create * sum_i alpha_i |i> = sqrt(i+1) * alpha_i * |i+1>``""" i = IdxSym('i') alpha = IndexedBase('alpha') hs = LocalSpace('0', dimension=3) expr = Create(hs=hs) * KetIndexedSum( alpha[i] * BasisKet(FockIndex(i), hs=hs), ranges=IndexOverFockSpace(i, hs), ) assert expr == KetIndexedSum( sympy.sqrt(i + 1) * alpha[i] * BasisKet(FockIndex(i + 1), hs=hs), ranges=IndexOverFockSpace(i, hs), ) assert expr.doit() == (alpha[0] * BasisKet(1, hs=hs) + sympy.sqrt(2) * alpha[1] * BasisKet(2, hs=hs))
def test_ascii_symbolic_labels(): """Test ascii representation of symbols with symbolic labels""" i = IdxSym('i') j = IdxSym('j') hs0 = LocalSpace(0) hs1 = LocalSpace(1) Psi = IndexedBase('Psi') assert ascii(BasisKet(FockIndex(2 * i), hs=hs0)) == '|2*i>^(0)' assert ascii(KetSymbol(StrLabel(2 * i), hs=hs0)) == '|2*i>^(0)' assert (ascii(KetSymbol(StrLabel(Psi[i, j]), hs=hs0 * hs1)) == '|Psi_ij>^(0*1)') expr = BasisKet(FockIndex(i), hs=hs0) * BasisKet(FockIndex(j), hs=hs1) assert ascii(expr) == '|i,j>^(0*1)' assert ascii(Bra(BasisKet(FockIndex(2 * i), hs=hs0))) == '<2*i|^(0)' assert (ascii(LocalSigma(FockIndex(i), FockIndex(j), hs=hs0)) == '|i><j|^(0)') expr = CoherentStateKet(symbols('alpha'), hs=1).to_fock_representation() assert (ascii(expr) == 'exp(-alpha*conjugate(alpha)/2) * ' '(Sum_{n in H_1} alpha**n/sqrt(n!) * |n>^(1))') tls = SpinSpace(label='s', spin='1/2', basis=('down', 'up')) Sig = IndexedBase('sigma') n = IdxSym('n') Sig_n = OperatorSymbol(StrLabel(Sig[n]), hs=tls) assert ascii(Sig_n, show_hs_label=False) == 'sigma_n'
def test_tex_symbolic_labels(): """Test tex representation of symbols with symbolic labels""" i = IdxSym('i') j = IdxSym('j') hs0 = LocalSpace(0) hs1 = LocalSpace(1) Psi = IndexedBase('Psi') with configure_printing(tex_use_braket=True): assert latex(BasisKet(FockIndex(2 * i), hs=hs0)) == r'\Ket{2 i}^{(0)}' assert latex(KetSymbol(StrLabel(2 * i), hs=hs0)) == r'\Ket{2 i}^{(0)}' assert (latex(KetSymbol(StrLabel(Psi[i, j]), hs=hs0 * hs1)) == r'\Ket{\Psi_{i j}}^{(0 \otimes 1)}') expr = BasisKet(FockIndex(i), hs=hs0) * BasisKet(FockIndex(j), hs=hs1) assert latex(expr) == r'\Ket{i,j}^{(0 \otimes 1)}' assert (latex(Bra(BasisKet(FockIndex(2 * i), hs=hs0))) == r'\Bra{2 i}^{(0)}') assert (latex(LocalSigma(FockIndex(i), FockIndex(j), hs=hs0)) == r'\Ket{i}\!\Bra{j}^{(0)}') alpha = symbols('alpha') expr = CoherentStateKet(alpha, hs=1).to_fock_representation() assert (latex(expr) == r'e^{- \frac{\alpha \overline{\alpha}}{2}} ' r'\left(\sum_{n \in \mathcal{H}_{1}} ' r'\frac{\alpha^{n}}{\sqrt{n!}} \Ket{n}^{(1)}\right)') assert (latex( expr, conjg_style='star') == r'e^{- \frac{\alpha {\alpha}^*}{2}} ' r'\left(\sum_{n \in \mathcal{H}_{1}} ' r'\frac{\alpha^{n}}{\sqrt{n!}} \Ket{n}^{(1)}\right)') tls = SpinSpace(label='s', spin='1/2', basis=('down', 'up')) Sig = IndexedBase('sigma') n = IdxSym('n') Sig_n = OperatorSymbol(StrLabel(Sig[n]), hs=tls) assert latex(Sig_n, show_hs_label=False) == r'\hat{\sigma}_{n}'
def test_braket_indexed_sum(): """Test braket product of sums""" i = IdxSym('i') hs = LocalSpace(1, dimension=5) alpha = IndexedBase('alpha') psi = KetSymbol('Psi', hs=hs) psi1 = KetIndexedSum( alpha[1, i] * BasisKet(FockIndex(i), hs=hs), ranges=IndexOverFockSpace(i, hs), ) psi2 = KetIndexedSum( alpha[2, i] * BasisKet(FockIndex(i), hs=hs), ranges=IndexOverFockSpace(i, hs), ) expr = Bra.create(psi1) * psi2 assert expr.space == TrivialSpace assert expr == ScalarIndexedSum.create( alpha[1, i].conjugate() * alpha[2, i], ranges=(IndexOverFockSpace(i, hs), ), ) assert BraKet.create(psi1, psi2) == expr expr = psi.dag() * psi2 assert expr == ScalarIndexedSum( alpha[2, i] * BraKet(psi, BasisKet(FockIndex(i), hs=hs)), ranges=IndexOverFockSpace(i, hs), ) assert BraKet.create(psi, psi2) == expr expr = psi1.dag() * psi assert expr == ScalarIndexedSum( alpha[1, i].conjugate() * BraKet(BasisKet(FockIndex(i), hs=hs), psi), ranges=IndexOverFockSpace(i, hs), ) assert BraKet.create(psi1, psi) == expr
def test_tls_norm(): """Test that calculating the norm of a TLS state results in 1""" hs = LocalSpace('tls', dimension=2) i = IdxSym('i') ket_i = BasisKet(FockIndex(i), hs=hs) nrm = BraKet.create(ket_i, ket_i) assert nrm == 1 psi = KetIndexedSum((1 / sympy.sqrt(2)) * ket_i, ranges=IndexOverFockSpace(i, hs)) nrm = BraKet.create(psi, psi) assert nrm == 1
def test_ket_indexed_sum_simplify_scalar(): """Test calling the simplify_scalar method of an KetIndexedSum.""" # This tests originates from some broken behavior when IndexedSum received # `ranges` as a positional argument instead of a keyword argument. a, b, ϕ = symbols('a, b, phi') factor = (a + b) * sympy.exp(I * ϕ) factor_expand = factor.expand() hs = LocalSpace(0) n = symbols('n', cls=IdxSym) psi_n = hs.basis_state(FockIndex(n)) expr = KetIndexedSum(factor * psi_n, ranges=(IndexOverFockSpace(n, hs=hs), )) expr_expand = expr.simplify_scalar(sympy.expand) expected = factor_expand * KetIndexedSum( psi_n, ranges=(IndexOverFockSpace(n, hs=hs), )) assert expr_expand != expected.term # happened when ranges was an argument assert expr_expand == expected
def test_ketbra_indexed_sum(): """Test ketbra product of sums""" i = IdxSym('i') hs = LocalSpace(1, dimension=5) alpha = IndexedBase('alpha') psi = KetSymbol('Psi', hs=hs) psi1 = KetIndexedSum( alpha[1, i] * BasisKet(FockIndex(i), hs=hs), ranges=IndexOverFockSpace(i, hs), ) psi2 = KetIndexedSum( alpha[2, i] * BasisKet(FockIndex(i), hs=hs), ranges=IndexOverFockSpace(i, hs), ) expr = psi1 * psi2.dag() assert expr.space == hs expected = OperatorIndexedSum( alpha[2, i.prime].conjugate() * alpha[1, i] * KetBra.create(BasisKet(FockIndex(i), hs=hs), BasisKet(FockIndex(i.prime), hs=hs)), ranges=(IndexOverFockSpace(i, hs), IndexOverFockSpace(i.prime, hs)), ) assert expr == expected assert KetBra.create(psi1, psi2) == expr expr = psi * psi2.dag() assert expr.space == hs expected = OperatorIndexedSum( alpha[2, i].conjugate() * KetBra.create(psi, BasisKet(FockIndex(i), hs=hs)), ranges=IndexOverFockSpace(i, hs), ) assert expr == expected assert KetBra.create(psi, psi2) == expr expr = psi1 * psi.dag() assert expr.space == hs expected = OperatorIndexedSum( alpha[1, i] * KetBra.create(BasisKet(FockIndex(i), hs=hs), psi), ranges=IndexOverFockSpace(i, hs), ) assert expr == expected assert KetBra.create(psi1, psi) == expr
def test_tensor_indexed_sum(): """Test tensor product of sums""" i = IdxSym('i') hs1 = LocalSpace(1) hs2 = LocalSpace(2) alpha = IndexedBase('alpha') psi1 = KetIndexedSum( alpha[1, i] * BasisKet(FockIndex(i), hs=hs1), ranges=IndexOverFockSpace(i, hs1), ) psi2 = KetIndexedSum( alpha[2, i] * BasisKet(FockIndex(i), hs=hs2), ranges=IndexOverFockSpace(i, hs2), ) expr = psi1 * psi2 assert expr.space == hs1 * hs2 rhs = KetIndexedSum( alpha[1, i] * alpha[2, i.prime] * (BasisKet(FockIndex(i), hs=hs1) * BasisKet(FockIndex(i.prime), hs=hs2)), ranges=(IndexOverFockSpace(i, hs1), IndexOverFockSpace(i.prime, hs2)), ) assert expr == rhs psi0 = KetSymbol('Psi', hs=0) psi3 = KetSymbol('Psi', hs=3) expr2 = psi0 * psi1 * psi2 * psi3 rhs = KetIndexedSum( alpha[1, i] * alpha[2, i.prime] * (psi0 * BasisKet(FockIndex(i), hs=hs1) * BasisKet(FockIndex(i.prime), hs=hs2) * psi3), ranges=(IndexOverFockSpace(i, hs1), IndexOverFockSpace(i.prime, hs2)), ) assert expr2 == rhs assert TensorKet.create(psi0, psi1, psi2, psi3) == expr2
def test_unicode_symbolic_labels(): """Test unicode representation of symbols with symbolic labels""" i = IdxSym('i') j = IdxSym('j') hs0 = LocalSpace(0) hs1 = LocalSpace(1) Psi = IndexedBase('Psi') assert unicode(BasisKet(FockIndex(2 * i), hs=hs0)) == '|2 i⟩⁽⁰⁾' assert unicode(KetSymbol(StrLabel(2 * i), hs=hs0)) == '|2 i⟩⁽⁰⁾' assert (unicode(KetSymbol(StrLabel(Psi[i, j]), hs=hs0 * hs1)) == '|Ψ_ij⟩^(0⊗1)') expr = BasisKet(FockIndex(i), hs=hs0) * BasisKet(FockIndex(j), hs=hs1) assert unicode(expr) == '|i,j⟩^(0⊗1)' assert unicode(Bra(BasisKet(FockIndex(2 * i), hs=hs0))) == '⟨2 i|⁽⁰⁾' assert (unicode(LocalSigma(FockIndex(i), FockIndex(j), hs=hs0)) == '|i⟩⟨j|⁽⁰⁾') expr = CoherentStateKet(symbols('alpha'), hs=1).to_fock_representation() assert unicode(expr) == 'exp(-α α ⃰/2) (∑_{n ∈ ℌ₁} αⁿ/√n! |n⟩⁽¹⁾)' tls = SpinSpace(label='s', spin='1/2', basis=('down', 'up')) Sig = IndexedBase('sigma') n = IdxSym('n') Sig_n = OperatorSymbol(StrLabel(Sig[n]), hs=tls) assert unicode(Sig_n, show_hs_label=False) == 'σ̂ₙ'
{}, ScalarTimesOperator(gamma, OpA), ), # State Algebra # ... ( KetIndexedSum, 'R001', (KetSymbol(StrLabel(i), hs=0) - KetSymbol(StrLabel(i), hs=0), ), dict(ranges=(IndexOverFockSpace(i, hs=LocalSpace(0)), )), ZeroKet, ), ( KetIndexedSum, 'R002', (symbols('a') * BasisKet(FockIndex(i), hs=0), ), dict(ranges=(IndexOverRange(i, 0, 1), )), symbols('a') * KetIndexedSum(BasisKet(FockIndex(i), hs=0), ranges=(IndexOverRange(i, 0, 1), )), ), ] @pytest.mark.parametrize("cls, rule, args, kwargs, expected", TESTS) def test_rule(cls, rule, args, kwargs, expected, caplog): """Check that for the given `cls` and `rule` name (which must be a key in ``cls._rules`` or ``cls._binary_rules``), if we instantiate ``cls(*args, **kwargs)``, `rule` is applied and we obtain the `expected` result. In order to review the log of how all test expressions are created, call
def test_ascii_ket_operations(): """Test the ascii representation of ket operations""" hs1 = LocalSpace('q_1', basis=('g', 'e')) hs2 = LocalSpace('q_2', basis=('g', 'e')) ket_g1 = BasisKet('g', hs=hs1) ket_e1 = BasisKet('e', hs=hs1) ket_g2 = BasisKet('g', hs=hs2) ket_e2 = BasisKet('e', hs=hs2) psi1 = KetSymbol("Psi_1", hs=hs1) psi2 = KetSymbol("Psi_2", hs=hs1) psi2 = KetSymbol("Psi_2", hs=hs1) psi3 = KetSymbol("Psi_3", hs=hs1) phi = KetSymbol("Phi", hs=hs2) A = OperatorSymbol("A_0", hs=hs1) gamma = symbols('gamma', positive=True) alpha = symbols('alpha') beta = symbols('beta') phase = exp(-I * gamma) i = IdxSym('i') assert ascii(psi1 + psi2) == '|Psi_1>^(q_1) + |Psi_2>^(q_1)' assert (ascii(psi1 - psi2 + psi3) == '|Psi_1>^(q_1) - |Psi_2>^(q_1) + |Psi_3>^(q_1)') with pytest.raises(UnequalSpaces): psi1 + phi with pytest.raises(AttributeError): (psi1 * phi).label assert ascii(psi1 * phi) == '|Psi_1>^(q_1) * |Phi>^(q_2)' with pytest.raises(OverlappingSpaces): psi1 * psi2 assert ascii(phase * psi1) == 'exp(-I*gamma) * |Psi_1>^(q_1)' assert (ascii( (alpha + 1) * KetSymbol('Psi', hs=0)) == '(alpha + 1) * |Psi>^(0)') assert ascii(A * psi1) == 'A_0^(q_1) |Psi_1>^(q_1)' with pytest.raises(SpaceTooLargeError): A * phi assert ascii(BraKet(psi1, psi2)) == '<Psi_1|Psi_2>^(q_1)' expr = BraKet(KetSymbol('Psi_1', alpha, hs=hs1), KetSymbol('Psi_2', beta, hs=hs1)) assert ascii(expr) == '<Psi_1(alpha)|Psi_2(beta)>^(q_1)' assert ascii(psi1.dag() * psi2) == '<Psi_1|Psi_2>^(q_1)' assert ascii(ket_e1.dag() * ket_e1) == '1' assert ascii(ket_g1.dag() * ket_e1) == '0' assert ascii(KetBra(psi1, psi2)) == '|Psi_1><Psi_2|^(q_1)' expr = KetBra(KetSymbol('Psi_1', alpha, hs=hs1), KetSymbol('Psi_2', beta, hs=hs1)) assert ascii(expr) == '|Psi_1(alpha)><Psi_2(beta)|^(q_1)' bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2) bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2) assert ascii(bell1) == '1/sqrt(2) * (|eg>^(q_1*q_2) - I * |ge>^(q_1*q_2))' assert ascii(bell2) == '1/sqrt(2) * (|ee>^(q_1*q_2) - |gg>^(q_1*q_2))' expr = BraKet.create(bell1, bell2) expected = ( r'1/2 * (<eg|^(q_1*q_2) + I * <ge|^(q_1*q_2)) * (|ee>^(q_1*q_2) ' r'- |gg>^(q_1*q_2))') assert ascii(expr) == expected assert (ascii(KetBra.create(bell1, bell2)) == '1/2 * (|eg>^(q_1*q_2) - I * |ge>^(q_1*q_2))(<ee|^(q_1*q_2) ' '- <gg|^(q_1*q_2))') expr = KetBra(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0)) assert ascii(expr) == "|Psi><i|^(0)" expr = KetBra(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0)) assert ascii(expr) == "|i><Psi|^(0)" expr = BraKet(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0)) assert ascii(expr) == "<Psi|i>^(0)" expr = BraKet(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0)) assert ascii(expr) == "<i|Psi>^(0)"
def test_qubit_state(): """Test sum_i alpha_i |i> for TLS""" i = IdxSym('i') alpha = IndexedBase('alpha') alpha_i = alpha[i] hs_tls = LocalSpace('tls', basis=('g', 'e')) term = alpha_i * BasisKet(FockIndex(i), hs=hs_tls) expr1 = KetIndexedSum.create(term, ranges=IndexOverFockSpace(i, hs=hs_tls)) expr2 = KetIndexedSum.create(term, ranges=IndexOverList(i, [0, 1])) expr3 = KetIndexedSum.create(term, ranges=IndexOverRange(i, start_from=0, to=1)) assert IndexOverFockSpace(i, hs=hs_tls) in expr1.kwargs['ranges'] assert ascii(expr1) == "Sum_{i in H_tls} alpha_i * |i>^(tls)" assert unicode(expr1) == "∑_{i ∈ ℌ_tls} α_i |i⟩⁽ᵗˡˢ⁾" assert ( srepr(expr1) == "KetIndexedSum(ScalarTimesKet(ScalarValue(Indexed(IndexedBase(Symbol('alpha')), IdxSym('i', integer=True))), BasisKet(FockIndex(IdxSym('i', integer=True)), hs=LocalSpace('tls', basis=('g', 'e')))), ranges=(IndexOverFockSpace(IdxSym('i', integer=True), LocalSpace('tls', basis=('g', 'e'))),))" ) with configure_printing(tex_use_braket=True): assert (latex(expr1) == r'\sum_{i \in \mathcal{H}_{tls}} \alpha_{i} \Ket{i}^{(tls)}') assert ascii(expr2) == 'Sum_{i in {0,1}} alpha_i * |i>^(tls)' assert unicode(expr2) == '∑_{i ∈ {0,1}} α_i |i⟩⁽ᵗˡˢ⁾' assert ( srepr(expr2) == "KetIndexedSum(ScalarTimesKet(ScalarValue(Indexed(IndexedBase(Symbol('alpha')), IdxSym('i', integer=True))), BasisKet(FockIndex(IdxSym('i', integer=True)), hs=LocalSpace('tls', basis=('g', 'e')))), ranges=(IndexOverList(IdxSym('i', integer=True), (0, 1)),))" ) with configure_printing(tex_use_braket=True): assert ( latex(expr2) == r'\sum_{i \in \{0,1\}} \alpha_{i} \Ket{i}^{(tls)}') assert ascii(expr3) == 'Sum_{i=0}^{1} alpha_i * |i>^(tls)' assert unicode(expr3) == '∑_{i=0}^{1} α_i |i⟩⁽ᵗˡˢ⁾' assert ( srepr(expr3) == "KetIndexedSum(ScalarTimesKet(ScalarValue(Indexed(IndexedBase(Symbol('alpha')), IdxSym('i', integer=True))), BasisKet(FockIndex(IdxSym('i', integer=True)), hs=LocalSpace('tls', basis=('g', 'e')))), ranges=(IndexOverRange(IdxSym('i', integer=True), 0, 1),))" ) with configure_printing(tex_use_braket=True): assert latex(expr3) == r'\sum_{i=0}^{1} \alpha_{i} \Ket{i}^{(tls)}' for expr in (expr1, expr2, expr3): assert expr.term.free_symbols == set([i, symbols('alpha'), alpha_i]) assert expr.term.bound_symbols == set() assert expr.free_symbols == set([symbols('alpha'), alpha_i]) assert expr.variables == [i] assert expr.bound_symbols == set([i]) assert len(expr) == len(expr.ranges[0]) == 2 assert 0 in expr.ranges[0] assert 1 in expr.ranges[0] assert expr.space == hs_tls assert len(expr.args) == 1 assert len(expr.kwargs) == 1 assert len(expr.operands) == 1 assert expr.args[0] == term assert expr.term == term expr_expand = expr.doit().substitute({ alpha[0]: alpha['g'], alpha[1]: alpha['e'] }) assert expr_expand == (alpha['g'] * BasisKet('g', hs=hs_tls) + alpha['e'] * BasisKet('e', hs=hs_tls)) assert ( ascii(expr_expand) == 'alpha_e * |e>^(tls) + alpha_g * |g>^(tls)') with pytest.raises(TypeError) as exc_info: KetIndexedSum.create(alpha_i * BasisKet(i, hs=hs_tls), IndexOverFockSpace(i, hs=hs_tls)) assert "label_or_index must be an instance of" in str(exc_info.value)
def test_tex_ket_operations(): """Test the tex representation of ket operations""" hs1 = LocalSpace('q_1', basis=('g', 'e')) hs2 = LocalSpace('q_2', basis=('g', 'e')) ket_g1 = BasisKet('g', hs=hs1) ket_e1 = BasisKet('e', hs=hs1) ket_g2 = BasisKet('g', hs=hs2) ket_e2 = BasisKet('e', hs=hs2) psi1 = KetSymbol("Psi_1", hs=hs1) psi2 = KetSymbol("Psi_2", hs=hs1) psi2 = KetSymbol("Psi_2", hs=hs1) psi3 = KetSymbol("Psi_3", hs=hs1) phi = KetSymbol("Phi", hs=hs2) A = OperatorSymbol("A_0", hs=hs1) gamma = symbols('gamma', positive=True) alpha = symbols('alpha') beta = symbols('beta') phase = exp(-I * gamma) i = IdxSym('i') assert (latex(psi1 + psi2) == r'\left\lvert \Psi_{1} \right\rangle^{(q_{1})} + ' r'\left\lvert \Psi_{2} \right\rangle^{(q_{1})}') assert (latex(psi1 - psi2 + psi3) == r'\left\lvert \Psi_{1} \right\rangle^{(q_{1})} - ' r'\left\lvert \Psi_{2} \right\rangle^{(q_{1})} + ' r'\left\lvert \Psi_{3} \right\rangle^{(q_{1})}') assert (latex( psi1 * phi) == r'\left\lvert \Psi_{1} \right\rangle^{(q_{1})} \otimes ' r'\left\lvert \Phi \right\rangle^{(q_{2})}') assert (latex(phase * psi1) == r'e^{- i \gamma} \left\lvert \Psi_{1} \right\rangle^{(q_{1})}') assert (latex((alpha + 1) * KetSymbol('Psi', hs=0)) == r'\left(\alpha + 1\right) \left\lvert \Psi \right\rangle^{(0)}') assert (latex( A * psi1 ) == r'\hat{A}_{0}^{(q_{1})} \left\lvert \Psi_{1} \right\rangle^{(q_{1})}') braket = BraKet(psi1, psi2) assert ( latex(braket, show_hs_label='subscript') == r'\left\langle \Psi_{1} \middle\vert \Psi_{2} \right\rangle_{(q_{1})}') assert (latex(braket, show_hs_label=False) == r'\left\langle \Psi_{1} \middle\vert \Psi_{2} \right\rangle') expr = BraKet(KetSymbol('Psi_1', alpha, hs=hs1), KetSymbol('Psi_2', beta, hs=hs1)) assert (latex(expr) == r'\left\langle \Psi_{1}\left(\alpha\right) \middle\vert ' r'\Psi_{2}\left(\beta\right) \right\rangle^{(q_{1})}') assert (latex( ket_e1 * ket_e2) == r'\left\lvert ee \right\rangle^{(q_{1} \otimes q_{2})}') assert latex(ket_e1.dag() * ket_e1) == r'1' assert latex(ket_g1.dag() * ket_e1) == r'0' ketbra = KetBra(psi1, psi2) assert (latex(ketbra) == r'\left\lvert \Psi_{1} \middle\rangle\!' r'\middle\langle \Psi_{2} \right\rvert^{(q_{1})}') assert (latex( ketbra, show_hs_label='subscript') == r'\left\lvert \Psi_{1} \middle\rangle\!' r'\middle\langle \Psi_{2} \right\rvert_{(q_{1})}') assert (latex( ketbra, show_hs_label=False) == r'\left\lvert \Psi_{1} \middle\rangle\!' r'\middle\langle \Psi_{2} \right\rvert') expr = KetBra(KetSymbol('Psi_1', alpha, hs=hs1), KetSymbol('Psi_2', beta, hs=hs1)) assert ( latex(expr) == r'\left\lvert \Psi_{1}\left(\alpha\right) \middle\rangle\!' r'\middle\langle \Psi_{2}\left(\beta\right) \right\rvert^{(q_{1})}') bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2) bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2) assert (latex(bell1) == r'\frac{1}{\sqrt{2}} \left(\left\lvert eg \right\rangle^{(q_{1} ' r'\otimes q_{2})} - i \left\lvert ge \right\rangle' r'^{(q_{1} \otimes q_{2})}\right)') assert (latex(bell2) == r'\frac{1}{\sqrt{2}} \left(\left\lvert ee \right\rangle^{(q_{1} ' r'\otimes q_{2})} - \left\lvert gg \right\rangle' r'^{(q_{1} \otimes q_{2})}\right)') assert (latex(bell2, show_hs_label=False) == r'\frac{1}{\sqrt{2}} \left(\left\lvert ee \right\rangle - ' r'\left\lvert gg \right\rangle\right)') assert BraKet.create(bell1, bell2).expand() == 0 assert (latex(BraKet.create( bell1, bell2)) == r'\frac{1}{2} \left(\left\langle eg \right\rvert' r'^{(q_{1} \otimes q_{2})} + i \left\langle ge \right\rvert' r'^{(q_{1} \otimes q_{2})}\right) ' r'\left(\left\lvert ee \right\rangle^{(q_{1} \otimes q_{2})} ' r'- \left\lvert gg \right\rangle^{(q_{1} \otimes q_{2})}\right)') assert ( latex(KetBra.create( bell1, bell2)) == r'\frac{1}{2} \left(\left\lvert eg \right\rangle' r'^{(q_{1} \otimes q_{2})} - i \left\lvert ge \right\rangle' r'^{(q_{1} \otimes q_{2})}\right)\left(\left\langle ee \right\rvert' r'^{(q_{1} \otimes q_{2})} - \left\langle gg \right\rvert' r'^{(q_{1} \otimes q_{2})}\right)') with configure_printing(tex_use_braket=True): expr = KetBra(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0)) assert latex(expr) == r'\Ket{\Psi}\!\Bra{i}^{(0)}' expr = KetBra(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0)) assert latex(expr) == r'\Ket{i}\!\Bra{\Psi}^{(0)}' expr = BraKet(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0)) assert latex(expr) == r'\Braket{\Psi | i}^(0)' expr = BraKet(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0)) assert latex(expr) == r'\Braket{i | \Psi}^(0)'
def test_scalar_indexed_sum(braket): """Test instantiation and behavior of a ScalarIndexedSum""" i = IdxSym('i') ip = i.prime ipp = ip.prime alpha = IndexedBase('alpha') a = symbols('a') hs = LocalSpace(0) ket_sum = KetIndexedSum( alpha[1, i] * BasisKet(FockIndex(i), hs=hs), ranges=(IndexOverRange(i, 1, 2), ), ) bra = KetSymbol('Psi', hs=hs).dag() expr = bra * ket_sum half = sympify(1) / 2 assert isinstance(expr, ScalarIndexedSum) assert isinstance(expr.term, ScalarTimes) assert expr.term == bra * ket_sum.term assert expr.ranges == ket_sum.ranges assert expr.doit() == (alpha[1, 1] * bra * BasisKet(1, hs=hs) + alpha[1, 2] * bra * BasisKet(2, hs=hs)) expr = ScalarIndexedSum.create(i, ranges=(IndexOverRange(i, 1, 2), )) assert expr == ScalarIndexedSum(i, ranges=(IndexOverRange(i, 1, 2), )) assert isinstance(expr.doit(), ScalarValue) assert expr.doit() == 3 assert expr.real == expr assert expr.imag == Zero assert expr.conjugate() == expr assert 3 * expr == expr * 3 == Sum(i, 1, 2)(3 * i) assert a * expr == expr * a == Sum(i, 1, 2)(a * i) assert braket * expr == ScalarTimes(braket, Sum(i, 1, 2)(i)) assert expr * braket == ScalarTimes(braket, Sum(i, 1, 2)(i)) assert (2 * i) * expr == 2 * expr * i assert (2 * i) * expr == Sum(i, 1, 2)(2 * i * i.prime) assert expr * expr == ScalarIndexedSum( ScalarValue(i * ip), ranges=(IndexOverRange(i, 1, 2), IndexOverRange(ip, 1, 2)), ) sum3 = expr**3 assert sum3 == ScalarIndexedSum( ScalarValue(i * ip * ipp), ranges=( IndexOverRange(i, 1, 2), IndexOverRange(ip, 1, 2), IndexOverRange(ipp, 1, 2), ), ) assert expr**0 is One assert expr**1 is expr assert (expr**alpha).exp == alpha assert expr**-1 == 1 / expr assert (1 / expr).exp == -1 assert (expr**-alpha).exp == -alpha sqrt_sum = sqrt(expr) assert sqrt_sum == ScalarPower(expr, ScalarValue(half)) expr = ScalarIndexedSum.create(I * i, ranges=(IndexOverRange(i, 1, 2), )) assert expr.real == Zero assert expr.imag == ScalarIndexedSum.create(i, ranges=(IndexOverRange( i, 1, 2), )) assert expr.conjugate() == -expr
def test_evaluate_symbolic_labels(): """Test the behavior of the `substitute` method for evaluation of symbolic labels""" i, j = symbols('i j', cls=IdxSym) A = IndexedBase('A') lbl = FockIndex(i + j) assert lbl.substitute({i: 1, j: 2}) == 3 assert lbl.substitute({i: 1}) == FockIndex(1 + j) assert lbl.substitute({j: 2}) == FockIndex(i + 2) assert lbl.substitute({i: 1}).substitute({j: 2}) == 3 assert lbl.substitute({}) == lbl lbl = StrLabel(A[i, j]) assert lbl.substitute({i: 1, j: 2}) == 'A_12' assert lbl.substitute({i: 1}) == StrLabel(A[1, j]) assert lbl.substitute({j: 2}) == StrLabel(A[i, 2]) assert lbl.substitute({i: 1}).substitute({j: 2}) == 'A_12' assert lbl.substitute({}) == lbl hs = SpinSpace('s', spin=3) lbl = SpinIndex(i + j, hs) assert lbl.substitute({i: 1, j: 2}) == '+3' assert lbl.substitute({i: 1}) == SpinIndex(1 + j, hs) assert lbl.substitute({j: 2}) == SpinIndex(i + 2, hs) assert lbl.substitute({i: 1}).substitute({j: 2}) == '+3' assert lbl.substitute({}) == lbl hs = SpinSpace('s', spin='3/2') lbl = SpinIndex((i + j) / 2, hs=hs) assert lbl.substitute({i: 1, j: 2}) == '+3/2' assert lbl.substitute({i: 1}) == SpinIndex((1 + j) / 2, hs) assert lbl.substitute({j: 2}) == SpinIndex((i + 2) / 2, hs) assert lbl.substitute({i: 1}).substitute({j: 2}) == '+3/2' assert lbl.substitute({}) == lbl