예제 #1
0
def get_dataset(ds):
    """ Get a dataset from a results dict, a string or a dataset
    
    Args:
        ds (dict, str or qcodes.DataSet): the data to be put in the dataset

    Returns:
        ds (qcodes.DataSet) dataset made from the input data
        
    """
    if isinstance(ds, dict):
        ds = ds.get('dataset', None)
    if ds is None:
        return None
    if isinstance(ds, str):
        ds = qcodes.load_data(ds)
    return ds
예제 #2
0
    def test_new_loop_1D_None_result(self):
        arrs = {}
        p_measure = Parameter("p_measure", set_cmd=None)

        with Measurement("new_loop_1D_None_result") as msmt:
            for k, val in enumerate(Sweep(self.p_sweep.sweep(0, 1, 0.1))):
                arr = arrs.setdefault(msmt.action_indices, np.zeros(msmt.loop_shape))

                if not k % 2:
                    p_measure(k)
                else:
                    p_measure(None)
                arr[k] = msmt.measure(p_measure)

        verify_msmt(msmt, arrs, allow_nan=True)

        # Verify that the measurement dataset records the correct measurement type
        data = load_data(msmt.dataset.location)
        self.assertEqual(data.metadata.get("measurement_type"), "Measurement")
예제 #3
0
def show_num(id, useQT=False, **kwargs):
    """
    Show  and return plot and data for id in current instrument.
    Args:
        id(number): id of instrument
        useQT: Use pyqtgraph as an alternative to Matplotlib
        **kwargs: Are passed to plot function

    Returns:
        plot, data : returns the plot and the dataset

    """
    if not getattr(CURRENT_EXPERIMENT, "init", True):
        raise RuntimeError("Experiment not initalized. "
                           "use qc.Init(mainfolder, samplename)")

    str_id = '{0:03d}'.format(id)

    t = qc.DataSet.location_provider.fmt.format(counter=str_id)
    data = qc.load_data(t)

    plots = []
    for value in data.arrays.keys():
        if "set" not in value:
            if useQT:
                plot = QtPlot(
                    getattr(data, value),
                    fig_x_position=CURRENT_EXPERIMENT['plot_x_position'],
                    **kwargs)
                title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                        str_id)
                plot.subplots[0].setTitle(title)
                plot.subplots[0].showGrid(True, True)
            else:
                plot = MatPlot(getattr(data, value), **kwargs)
                title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                        str_id)
                plot.subplots[0].set_title(title)
                plot.subplots[0].grid()
            plots.append(plot)
    return data, plots
예제 #4
0
def show_num(id, useQT=False, do_plots=True):
    """
    Show  and return plot and data for id in current instrument.
    Args:
        id(number): id of instrument
        do_plots: Default False: if false no plots are produced.
    Returns:
        plot, data : returns the plot and the dataset
    """
    if not getattr(CURRENT_EXPERIMENT, "init", True):
        raise RuntimeError("Experiment not initalized. "
                           "use qc.Init(mainfolder, samplename)")

    str_id = '{0:03d}'.format(id)

    t = qc.DataSet.location_provider.fmt.format(counter=str_id)
    data = qc.load_data(t)

    if do_plots:
        plots = []
        for value in data.arrays.keys():
            if "set" not in value:
                if useQT:
                    plot = QtPlot(
                        getattr(data, value),
                        fig_x_position=CURRENT_EXPERIMENT['plot_x_position'])
                    title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                            str_id)
                    plot.subplots[0].setTitle(title)
                    plot.subplots[0].showGrid(True, True)
                else:
                    plot = MatPlot(getattr(data, value))
                    title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                            str_id)
                    plot.subplots[0].set_title(title)
                    plot.subplots[0].grid()
                plots.append(plot)
    else:
        plots = None
    return data, plots
예제 #5
0
    def logCallback(self, index):
        ''' Function called when a log entry is selected '''
        logging.info('logCallback!')
        logging.debug('logCallback: index %s' % str(index))
        self.__debug['last'] = index
        pp = index.parent()
        row = index.row()

        tag = pp.child(row, 2).data()

        # load data
        if tag is not None:
            print('logCallback! tag %s' % tag)
            try:
                logging.debug('load tag %s' % tag)
                data = qcodes.load_data(tag)

                self.qplot.clear()

                infotxt = 'arrays: ' + ', '.join(list(data.arrays.keys()))
                q = pp.child(row, 1).model()
                q.setData(pp.child(row, 1), infotxt)

                param_name = self.plot_parameter(data)

                if param_name is not None:
                    logging.info(
                        'using parameter %s for plotting' % param_name)
                    self.qplot.add(getattr(data, param_name))
                else:
                    logging.info('could not find parameter for DataSet')
            except Exception as e:
                print('logCallback! error ...')
                print(e)
                logging.warning(e)
        pass
예제 #6
0
파일: data.py 프로젝트: keaton217/qtt
def load_dataset(location, io=None, verbose=0):
    """ Load a dataset from storage

    An attempt is made to automatically detect the formatter. Supported are currently GNUPlotFormat and HDF5Format

    Args:
        location (str): either the relative or full location
        io (None or qcodes.DiskIO): 
    Returns:
        dataset (DataSet or None)
    """

    if io is None:
        io = qcodes.DataSet.default_io
    formatters = [qcodes.DataSet.default_formatter]

    try:
        from qcodes.data.hdf5_format_hickle import HDF5FormatHickle
        formatters += [HDF5FormatHickle()]
    except:
        pass

    from qcodes.data.hdf5_format import HDF5Format
    formatters += [HDF5Format()]

    from qcodes.data.gnuplot_format import GNUPlotFormat
    formatters += [GNUPlotFormat()]

    data = None
    for ii, hformatter in enumerate(formatters):
        try:
            if verbose:
                print('%d: %s' % (ii, hformatter))
            data = qcodes.load_data(location, formatter=hformatter, io=io)
            if len(data.arrays) == 0:
                data = None
                raise Exception(
                    'empty dataset, probably a HDF5 format misread by GNUPlotFormat'
                )
            logging.debug('load_data: loaded %s with %s' %
                          (location, hformatter))
        except Exception as ex:
            logging.info(
                'load_data: location %s: failed for formatter %d: %s' %
                (location, ii, hformatter))
            if verbose:
                print(ex)
            pass
        finally:
            if data is not None:
                if isinstance(hformatter, GNUPlotFormat):
                    # workaround for bug in GNUPlotFormat not saving the units
                    if '__dataset_metadata' in data.metadata:
                        dataset_meta = data.metadata['__dataset_metadata']
                        for key, array_metadata in dataset_meta[
                                'arrays'].items():
                            if key in data.arrays:
                                if data.arrays[key].unit is None:
                                    if verbose:
                                        print(
                                            'load_dataset: updating unit for %s'
                                            % key)
                                    data.arrays[key].unit = array_metadata[
                                        'unit']

                if verbose:
                    print('succes with formatter %s' % hformatter)
                break
    if verbose:
        if data is None:
            print('could not load data from %s, returning None' % location)
    return data
예제 #7
0
def show_num(ids,
             samplefolder=None,
             useQT=False,
             avg_sub='',
             do_plots=True,
             savepng=True,
             fig_size=[6, 4],
             clim=None,
             dataname=None,
             xlim=None,
             ylim=None,
             transpose=False,
             auto_color_scale: Optional[bool] = None,
             cutoff_percentile: Optional[Union[Tuple[Number, Number],
                                               Number]] = None,
             **kwargs):
    """
    Show and return plot and data.
    Args:
        ids (number, list): id or list of ids of dataset(s)
        samplefolder (str): Sample folder if loading data from different sample than the initialized. 
        useQT (boolean): If true plots with QTplot instead of matplotlib
        avg_sub (str: 'col' or 'row'): Subtracts average from either each collumn ('col') or each row ('row')
        do_plots: (boolean): if false no plots are produced.
        dataname (str): If given only plots dataset with that name
        savepng (boolean): If true saves matplotlib figure as png
        fig_size [6,4]: Figure size in inches
        clim [cmin,cmax]: Set min and max of colorbar to cmin and cmax respectrively
        xlim [xmin,xmax]: Set limits on x axis
        ylim [ymin,ymax]: set limits on y axis
        transpose (boolean): Transpose data to be plotted (only works for 2D scans and qc.MatPlot)
        auto_color_scale: if True, the colorscale of heatmap plots will be
            automatically adjusted to disregard outliers.
        cutoff_percentile: percentile of data that may maximally be clipped
            on both sides of the distribution.
            If given a tuple (a,b) the percentile limits will be a and 100-b.
            See also the plotting tuorial notebook.
        **kwargs: Are passed to plot function

    Returns:
        data, plots : returns the plots and the datasets

    """
    # default values
    if auto_color_scale is None:
        auto_color_scale = qcodes.config.plotting.auto_color_scale.enabled
    if cutoff_percentile is None:
        cutoff_percentile = cast(
            Tuple[Number, Number],
            tuple(qcodes.config.plotting.auto_color_scale.cutoff_percentile))

    if not isinstance(ids, collections.Iterable):
        ids = (ids, )

    data_list = []
    keys_list = []

    # Define samplefolder
    if samplefolder == None:
        check_experiment_is_initialized()
        samplefolder = qc.DataSet.location_provider.fmt.format(counter='')

    # Load all datasets into list
    for id in ids:
        path = samplefolder + '{0:03d}'.format(id)
        data = qc.load_data(path)
        data_list.append(data)

        # find datanames to be plotted
        if do_plots:
            if useQT and len(ids) is not 1:
                raise ValueError(
                    'qcodes.QtPlot does not support multigraph plotting. Set useQT=False to plot multiple datasets.'
                )
            if dataname is not None:
                if dataname not in [
                        key for key in data.arrays.keys() if "_set" not in key
                ]:
                    raise RuntimeError('Dataname not in dataset. Input dataname was: \'{}\''.format(dataname), \
                        'while dataname(s) in dataset are: \'{}\'.'.format('\', \''.join(data.arrays.keys())))
                keys = [dataname]
            else:
                keys = [key for key in data.arrays.keys() if "_set" not in key]
            keys_list.append(keys)

    if do_plots:
        unique_keys = list(
            set([item for sublist in keys_list for item in sublist]))
        plots = []
        num = ''
        l = len(unique_keys)
        for j, key in enumerate(unique_keys):
            array_list = []
            xlims = [[], []]
            ylims = [[], []]
            clims = [[], []]
            # Find datasets containing data with dataname == key
            for data, keys in zip(data_list, keys_list):
                if key in keys:
                    arrays = getattr(data, key)
                    if transpose and len(arrays.set_arrays) == 2:
                        if useQT:
                            raise AttributeError(
                                'Transpose only works for qc.MatPlot.')
                        if dataname is None and l != 1:
                            raise ValueError(
                                'Dataname has to be provided to plot data transposed for dataset with more '
                                'than 1 measurement. Datanames in dataset are: \'{}\'.'
                                .format('\', \''.join(unique_keys)))
                        arrays.ndarray = arrays.ndarray.T
                        set0_temp = arrays.set_arrays[0]
                        set1_temp = arrays.set_arrays[1]
                        set0_temp.ndarray = set0_temp.ndarray.T
                        set1_temp.ndarray = set1_temp.ndarray.T
                        arrays.set_arrays = (
                            set1_temp,
                            set0_temp,
                        )
                    if avg_sub == 'row':
                        for i in range(np.shape(arrays.ndarray)[0]):
                            arrays.ndarray[i, :] -= np.nanmean(
                                arrays.ndarray[i, :])
                    if avg_sub == 'col':
                        for i in range(np.shape(arrays.ndarray)[1]):
                            arrays.ndarray[:,
                                           i] -= np.nanmean(arrays.ndarray[:,
                                                                           i])
                    array_list.append(arrays)

                    # Find axis limits for dataset
                    if len(arrays.set_arrays) == 2:
                        xlims[0].append(np.nanmin(arrays.set_arrays[1]))
                        xlims[1].append(np.nanmax(arrays.set_arrays[1]))
                        ylims[0].append(np.nanmin(arrays.set_arrays[0]))
                        ylims[1].append(np.nanmax(arrays.set_arrays[0]))
                        if auto_color_scale:
                            vlims = auto_range_iqr(arrays.ndarray)
                        else:
                            vlims = (np.nanmin(arrays.ndarray),
                                     np.nanmax(arrays.ndarray))
                        clims[0].append(vlims[0])
                        clims[1].append(vlims[1])
                    else:
                        xlims[0].append(np.nanmin(arrays.set_arrays[0]))
                        xlims[1].append(np.nanmax(arrays.set_arrays[0]))
                        ylims[0].append(np.nanmin(arrays.ndarray))
                        ylims[1].append(np.nanmax(arrays.ndarray))

            if useQT:
                plot = QtPlot(
                    array_list[0],
                    fig_x_position=CURRENT_EXPERIMENT['plot_x_position'],
                    **kwargs)
                title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                        '{}'.format(ids[0]))
                plot.subplots[0].setTitle(title)
                plot.subplots[0].showGrid(True, True)
                if savepng:
                    print('Save plot only working for matplotlib figure.', \
                        'Set useQT=False to save png.')
            else:
                plot = MatPlot(array_list, **kwargs)
                plot.rescale_axis()
                plot.fig.tight_layout(pad=3)
                plot.fig.set_size_inches(fig_size)
                # Set axis limits
                if xlim is None:
                    plot[0].axes.set_xlim(
                        [np.nanmin(xlims[0]),
                         np.nanmax(xlims[1])])
                else:
                    plot[0].axes.set_xlim(xlim)
                if ylim is None:
                    plot[0].axes.set_ylim(
                        [np.nanmin(ylims[0]),
                         np.nanmax(ylims[1])])
                else:
                    plot[0].axes.set_ylim(ylim)
                if len(arrays.set_arrays) == 2:
                    total_clim = [None, None]
                    for i in range(len(array_list)):
                        # TODO(DV): get colorbar from plot children (should be ax.qcodes_colorbar)
                        if clim is None:
                            internal_clim = np.nanmin(clims[0]), np.nanmax(
                                clims[1])
                        else:
                            internal_clim = clim
                        if total_clim[0] is None or internal_clim[
                                0] < total_clim[0]:
                            total_clim[0] = internal_clim[0]
                        if total_clim[1] is None or internal_clim[
                                1] > total_clim[1]:
                            total_clim[1] = internal_clim[1]
                    colorbar = plot[0].qcodes_colorbar
                    apply_color_scale_limits(colorbar,
                                             new_lim=tuple(total_clim))

                # Set figure titles
                plot.fig.suptitle(samplefolder)
                if len(ids) < 6:
                    plot.subplots[0].set_title(', '.join(map(str, ids)))
                else:
                    plot.subplots[0].set_title(' - '.join(
                        map(str, [ids[0], ids[-1]])))
                plt.draw()

                # Save figure
                if savepng:
                    if len(ids) == 1:
                        title_png = samplefolder + CURRENT_EXPERIMENT[
                            'png_subfolder'] + sep + '{}'.format(ids[0])
                    else:
                        title_png = samplefolder + CURRENT_EXPERIMENT[
                            'png_subfolder'] + sep + '{}-{}'.format(
                                ids[0], ids[-1])
                    if l > 1:
                        num = '{}'.format(j + 1)
                    plt.savefig(title_png + '_{}_{}.png'.format(num, avg_sub),
                                dpi=500)
            plots.append(plot)
    else:
        plots = None
    return data_list, plots
예제 #8
0
    def fit(self,
            id,
            fitclass,
            do_plots=True,
            dataname=None,
            samplefolder=None,
            p0=None,
            **kwargs):

        str_id = '{0:03d}'.format(id)
        if samplefolder == None:
            check_experiment_is_initialized()

            path = qc.DataSet.location_provider.fmt.format(counter=str_id)
            data = qc.load_data(path)
        else:
            path = '{}{}{}'.format(samplefolder, sep, str_id)
            data = qc.load_data(path)

        # Get dataname to be fitted
        if dataname == None:
            # Function only made for a single dataname. Check there isnt more datanames in the dataset.
            key_data = [
                key for key in data.arrays.keys() if "_set" not in key[-4:]
            ]
            if len(key_data) != 1:
                raise RuntimeError(
                    'Dataset has more than one dataname. Choose dataname to be fitted from: {}.'
                    .format(', '.join(key_data)))
        else:
            # Check input dataname is in dataset.
            if dataname not in [
                    key for key in data.arrays.keys() if "_set" not in key[-4:]
            ]:
                raise RuntimeError(
                    'Dataname not in dataset. Input dataname was: \'{}\' while dataname(s) in dataset are: {}.'
                    .format(dataname, ', '.join(key_data)))
            key_data = [dataname]

        # Do fits separately for 1D and 2D datasets
        keys_set = [key for key in data.arrays.keys() if "_set" in key[-4:]]

        # Do fit and plot for 1D data
        if len(keys_set) == 1:
            qcxdata = getattr(data, keys_set[0])
            qcydata = getattr(data, key_data[0])
            # Get initial guess on parameter is guess function is defined
            if (p0 == None and hasattr(fitclass, 'guess')):
                p0 = getattr(fitclass, 'guess')(qcxdata.ndarray,
                                                qcydata.ndarray)
            popt, pcov = curve_fit(fitclass.fun,
                                   qcxdata.ndarray,
                                   qcydata.ndarray,
                                   p0=p0,
                                   **kwargs)

            if do_plots:
                plot = self.plot_1D(qcxdata, qcydata, fitclass, popt)
                title_list = plot.get_default_title().split(sep)
                title_list.insert(-1, 'analysis')
                title = sep.join(title_list)
                plt.savefig("{}_{}.png".format(title, fitclass.name), dpi=500)
                return popt, pcov, plot
            else:
                return popt, pcov
        if len(keys_set) == 2:
            print('Fitting for 2D datasets not implemented.')
from qtt.parameterviewer import createParameterWidget

if __name__ == '__main__' and not remote:
    p = createParameterWidget([
        gates,
    ])

if __name__ == '__main__' and remote:
    p = createParameterWidgetRemote([
        gates,
    ])

#%% load data and plot results
if __name__ == '__main__' and 1:
    olddatadir = r'K:\ns\qt\spin-qubits\data\b057_data\2016 3dot experiment\data\2016-11-11\18-20-44_P2_P3'
    dataset_old = load_data(location=olddatadir)
    #    qcodes.plots.pyqtgraph.QtPlot(dataset_old.measured, interval=0)
    plotje = qcodes.plots.qcmatplotlib.MatPlot(dataset_old.measured,
                                               interval=0)

#%% delta
x = 2
gates.P1.set(gates.P1.get() + Dot_delta['P1'] * x)
gates.P2.set(gates.P2.get() + Dot_delta['P2'] * x)
gates.P3.set(gates.P3.get() + Dot_delta['P3'] * x)

#%% epsilon
x = 2
gates.P1.set(gates.P1.get() + Dot_epsilon['P1'] * x)
gates.P2.set(gates.P2.get() + Dot_epsilon['P2'] * x)
gates.P3.set(gates.P3.get() + Dot_epsilon['P3'] * x)
예제 #10
0
def show_num(ids, samplefolder=None,useQT=False,avg_sub='',do_plots=True,savepng=True,
            fig_size=[6,4],clim=None,dataname=None,xlim=None,ylim=None,**kwargs):
    """
    Show and return plot and data.
    Args:
        ids (number, list): id or list of ids of dataset(s)
        samplefolder (str): Sample folder if loading data from different sample than the initialized. 
        useQT (boolean): If true plots with QTplot instead of matplotlib
        avg_sub (str: 'col' or 'row'): Subtracts average from either each collumn ('col') or each row ('row')
        do_plots: (boolean): if false no plots are produced.
        dataname (str): If given only plots dataset with that name
        savepng (boolean): If true saves matplotlib figure as png
        fig_size [6,4]: Figure size in inches
        clim [cmin,cmax]: Set min and max of colorbar to cmin and cmax respectrively
        xlim [xmin,xmax]: Set limits on x axis
        ylim [ymin,ymax]: set limits on y axis
        **kwargs: Are passed to plot function

    Returns:
        data, plots : returns the plots and the datasets

    """
    
    if not isinstance(ids, collections.Iterable):
        ids = (ids,)

    data_list = []
    keys_list = []

    # Define samplefolder
    if samplefolder==None:
        check_experiment_is_initialized()
        samplefolder = qc.DataSet.location_provider.fmt.format(counter='')

    # Load all datasets into list
    for id in ids:
        path = samplefolder + '{0:03d}'.format(id)
        data = qc.load_data(path)
        data_list.append(data)

        # find datanames to be plotted
        if do_plots:
            if useQT and len(ids) is not 1:
                raise ValueError('qcodes.QtPlot does not support multigraph plotting. Set useQT=False to plot multiple datasets.')
            if dataname is not None:
                if dataname not in [key for key in data.arrays.keys() if "_set" not in key]:
                    raise RuntimeError('Dataname not in dataset. Input dataname was: \'{}\'', \
                        'while dataname(s) in dataset are: {}.'.format(dataname,', '.join(data.arrays.keys())))
                keys = [dataname]
            else:
                keys = [key for key in data.arrays.keys() if "_set" not in key]
            keys_list.append(keys)


    if do_plots:
        unique_keys = list(set([item for sublist in keys_list for item in sublist]))
        plots = []
        num = ''
        l = len(unique_keys)

        for j, key in enumerate(unique_keys):
            array_list = []
            xlims = [[],[]]
            ylims = [[],[]]
            clims = [[],[]]
            # Find datasets containing data with dataname == key
            for data, keys in zip(data_list,keys_list):
                if key in keys:
                    arrays = getattr(data, key)
                    if avg_sub == 'row':
                        for i in range(np.shape(arrays)[0]):
                            arrays[i,:] -= np.nanmean(arrays[i,:])
                    if avg_sub == 'col':
                        for i in range(np.shape(arrays)[1]):
                            arrays[:,i] -= np.nanmean(arrays[:,i])
                    array_list.append(arrays)

                    # Find axis limits for dataset
                    if len(arrays.set_arrays)==2:
                        xlims[0].append(np.nanmin(arrays.set_arrays[1]))
                        xlims[1].append(np.nanmax(arrays.set_arrays[1]))
                        ylims[0].append(np.nanmin(arrays.set_arrays[0]))
                        ylims[1].append(np.nanmax(arrays.set_arrays[0]))
                        clims[0].append(np.nanmin(arrays.ndarray))
                        clims[1].append(np.nanmax(arrays.ndarray))
                    else:
                        xlims[0].append(np.nanmin(arrays.set_arrays[0]))
                        xlims[1].append(np.nanmax(arrays.set_arrays[0]))
                        ylims[0].append(np.nanmin(arrays.ndarray))
                        ylims[1].append(np.nanmax(arrays.ndarray))

            if useQT:
                plot = QtPlot(array_list[0],
                    fig_x_position=CURRENT_EXPERIMENT['plot_x_position'],
                    **kwargs)
                title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                        '{}'.format(ids[0]))
                plot.subplots[0].setTitle(title)
                plot.subplots[0].showGrid(True, True)
                if savepng:
                    print('Save plot only working for matplotlib figure.', \
                        'Set useQT=False to save png.')
            else:
                plot = MatPlot(array_list, **kwargs)
                plot.rescale_axis()
                plot.fig.tight_layout(pad=3)
                plot.fig.set_size_inches(fig_size)
                # Set axis limits
                if xlim is None:
                    plot[0].axes.set_xlim([np.nanmin(xlims[0]),np.nanmax(xlims[1])])
                else:
                    plot[0].axes.set_xlim(xlim)
                if ylim is None:
                    plot[0].axes.set_ylim([np.nanmin(ylims[0]),np.nanmax(ylims[1])])
                else:
                    plot[0].axes.set_ylim(ylim)
                if len(arrays.set_arrays)==2:
                    for i in range(len(array_list)):
                        if clim is None:
                            plot[0].get_children()[i].set_clim(np.nanmin(clims[0]),np.nanmax(clims[1]))
                        else:
                            plot[0].get_children()[i].set_clim(clim)

                # Set figure titles
                plot.fig.suptitle(samplefolder)
                if len(ids)<6:
                    plot.subplots[0].set_title(', '.join(map(str,ids)))
                else:
                    plot.subplots[0].set_title(' - '.join(map(str,[ids[0],ids[-1]])))
                plt.draw()

                # Save figure
                if savepng:
                    if len(ids) == 1:
                        title_png = samplefolder+CURRENT_EXPERIMENT['png_subfolder']+sep+'{}'.format(ids[0])
                    else:
                        title_png = samplefolder+CURRENT_EXPERIMENT['png_subfolder']+sep+'{}-{}'.format(ids[0],ids[-1])
                    if l>1:
                        num = '{}'.format(j+1)
                    plt.savefig(title_png+'_{}_{}.png'.format(num,avg_sub),dpi=500)
            plots.append(plot)
    else:
        plots = None
    return data_list, plots
예제 #11
0
def show_num(id, samplefolder=None, useQT=False, ave_col=False, ave_row=False, do_plots=True, savepng=False, clim=None, **kwargs):
    """
    Show  and return plot and data for id in current instrument.
    Args:
        id(number): id of instrument
        useQT (boolean): If true plots with QTplot instead of matplotlib
        ave_col (boolean): If true subtracts average from each collumn
        ave_row (boolean): If true subtracts average from each row
        do_plots: Default False: if false no plots are produced.
        savepng (boolean): If true saves matplotlib figure as png
        clim [cmin,cmax]: Set min and max of colorbar to cmin and cmax respectrively
        **kwargs: Are passed to plot function

    Returns:
        data, plots : returns the plot and the dataset

    """
    str_id = '{0:03d}'.format(id)
    if samplefolder==None:
        check_experiment_is_initialized()

        path = qc.DataSet.location_provider.fmt.format(counter=str_id)
        data = qc.load_data(path)
    else:
        path = '{}{}{}'.format(samplefolder,sep,str_id)
        data = qc.load_data(path)

    keys = [key for key in data.arrays.keys() if "_set" not in key[-4:]]

    if do_plots:
        plots = []
        avestr = ''
        num = ''
        l = len(keys)

        for j, value in enumerate(keys):
            arrays = getattr(data, value)
            if ave_row:
                for i in range(np.shape(arrays)[0]):
                    arrays[i,:] -= arrays[i,:].mean()
                avestr = '_row'
            if ave_col:
                for i in range(np.shape(arrays)[1]):
                    arrays[:,i] -= arrays[:,i].mean()
                avestr = '_col'
            if useQT:
                plot = QtPlot(
                    getattr(data, value),
                    fig_x_position=CURRENT_EXPERIMENT['plot_x_position'],
                    **kwargs)
                title = "{} #{}".format(CURRENT_EXPERIMENT["sample_name"],
                                        str_id)
                plot.subplots[0].setTitle(title)
                plot.subplots[0].showGrid(True, True)
                if savepng:
                    print('Save plot only working for matplotlib figure. Set useQT=False to save png.')
            else:
                plot = MatPlot(getattr(data, value), **kwargs)
                plot.rescale_axis()
                plot.fig.tight_layout(pad=3)
                if clim is not None:
                    mesh = plot[0].get_children()[0]
                    mesh.set_clim(clim[0],clim[1])
                    plt.draw()
                if savepng:
                    title_list_png = plot.get_default_title().split(sep)
                    title_list_png.insert(-1, CURRENT_EXPERIMENT['png_subfolder'])
                    title_png = sep.join(title_list_png)
                    if l>1:
                        num = '_{}'.format(j+1)
                    plt.savefig("{}{}{}.png".format(title_png,num,avestr),dpi=500)
            plots.append(plot)
    else:
        plots = None
    return data, plots