def run(lr=0.001): x = np.random.random((1000, 5)).astype("float32") y = np.random.randint(0, 5, (1000, )).astype("int64") trainloader = q.dataload(x[:800], y[:800], batch_size=100) validloader = q.dataload(x[800:], y[800:], batch_size=100) m = torch.nn.Sequential(torch.nn.Linear(5, 100), torch.nn.Linear(100, 5)) m[1].weight.requires_grad = False losses = q.lossarray(torch.nn.CrossEntropyLoss()) params = m.parameters() for param in params: print(param.requires_grad) init_val = m[1].weight.detach().numpy() optim = torch.optim.Adam(q.params_of(m), lr=lr) trainer = q.trainer(m).on(trainloader).loss(losses).optimizer( optim).epochs(100) # for b, (i, e) in trainer.inf_batches(): # print(i, e) validator = q.tester(m).on(validloader).loss(losses) q.train(trainer, validator).run() new_val = m[1].weight.detach().numpy() print(np.linalg.norm(new_val - init_val))
def run(lr=20., dropout=0.2, dropconnect=0.2, gradnorm=0.25, epochs=25, embdim=200, encdim=200, numlayers=2, seqlen=35, batsize=20, eval_batsize=10, cuda=False, gpu=0, test=False): tt = q.ticktock("script") device = torch.device("cpu") if cuda: device = torch.device("cuda", gpu) tt.tick("loading data") train_batches, valid_batches, test_batches, D = \ load_data(batsize=batsize, eval_batsize=eval_batsize, seqlen=seqlen) tt.tock("data loaded") print("{} batches in train".format(len(train_batches))) tt.tick("creating model") dims = [embdim] + ([encdim] * numlayers) m = RNNLayer_LM(*dims, worddic=D, dropout=dropout) if test: for i, batch in enumerate(train_batches): y = m(batch[0]) if i > 5: break print(y.size()) loss = q.SeqKLLoss(time_average=True, size_average=True, mode="logits") ppl_loss = q.SeqPPL_Loss(time_average=True, size_average=True, mode="logits") optim = torch.optim.SGD(q.params_of(m), lr=lr) gradclip = q.ClipGradNorm(gradnorm) trainer = q.trainer(m).on(train_batches).loss(loss).optimizer( optim).device(device).hook(m).hook(gradclip) tester = q.tester(m).on(valid_batches).loss( loss, ppl_loss).device(device).hook(m) tt.tock("created model") tt.tick("training") q.train(trainer, tester).run(epochs=epochs) tt.tock("trained")
def run_classify(lr=0.001, seqlen=6, numex=500, epochs=25, batsize=10, test=True, cuda=False, gpu=0): device = torch.device("cpu") if cuda: device = torch.device("cuda", gpu) # region construct data colors = "red blue green magenta cyan orange yellow grey salmon pink purple teal".split( ) D = dict(zip(colors, range(len(colors)))) inpseqs = [] targets = [] for i in range(numex): inpseq = list(np.random.choice(colors, seqlen, replace=False)) target = np.random.choice(range(len(inpseq)), 1)[0] target_class = D[inpseq[target]] inpseq[target] = "${}$".format(inpseq[target]) inpseqs.append("".join(inpseq)) targets.append(target_class) sm = q.StringMatrix() sm.tokenize = lambda x: list(x) for inpseq in inpseqs: sm.add(inpseq) sm.finalize() print(sm[0]) print(sm.D) targets = np.asarray(targets) data = q.dataload(sm.matrix[:-100], targets[:-100], batch_size=batsize) valid_data = q.dataload(sm.matrix[-100:], targets[-100:], batch_size=batsize) # endregion # region model embdim = 20 enc2inpdim = 45 encdim = 20 outdim = 20 emb = q.WordEmb(embdim, worddic=sm.D) # sm dictionary (characters) out = q.WordLinout(outdim, worddic=D) # target dictionary # encoders: enc1 = q.RNNEncoder(embdim, encdim, bidir=True) enc2 = q.RNNCellEncoder(enc2inpdim, outdim // 2, bidir=True) # model class Model(torch.nn.Module): def __init__(self, dim, _emb, _out, _enc1, _enc2, **kw): super(Model, self).__init__(**kw) self.dim, self.emb, self.out, self.enc1, self.enc2 = dim, _emb, _out, _enc1, _enc2 self.score = torch.nn.Sequential( torch.nn.Linear(dim, 1, bias=False), torch.nn.Sigmoid()) self.emb_expander = ExpandVecs(embdim, enc2inpdim, 2) self.enc_expander = ExpandVecs(encdim * 2, enc2inpdim, 2) def forward(self, x, with_att=False): # embed and encode xemb, xmask = self.emb(x) xenc = self.enc1(xemb, mask=xmask) # compute attention xatt = self.score(xenc).squeeze( 2) * xmask.float()[:, :xenc.size(1)] # encode again _xemb = self.emb_expander(xemb[:, :xenc.size(1)]) _xenc = self.enc_expander(xenc) _, xenc2 = self.enc2(_xemb, gate=xatt, mask=xmask[:, :xenc.size(1)], ret_states=True) scores = self.out(xenc2.view(xenc.size(0), -1)) if with_att: return scores, xatt else: return scores model = Model(40, emb, out, enc1, enc2) # endregion # region test if test: inps = torch.tensor(sm.matrix[0:2]) outs = model(inps) # endregion # region train optimizer = torch.optim.Adam(q.params_of(model), lr=lr) trainer = q.trainer(model).on(data).loss(torch.nn.CrossEntropyLoss(), q.Accuracy())\ .optimizer(optimizer).hook(q.ClipGradNorm(5.)).device(device) validator = q.tester(model).on(valid_data).loss( q.Accuracy()).device(device) q.train(trainer, validator).run(epochs=epochs) # endregion # region check attention #TODO # feed a batch inpd = torch.tensor(sm.matrix[400:410]) outd, att = model(inpd, with_att=True) outd = torch.max(outd, 1)[1].cpu().detach().numpy() inpd = inpd.cpu().detach().numpy() att = att.cpu().detach().numpy() rD = {v: k for k, v in sm.D.items()} roD = {v: k for k, v in D.items()} for i in range(len(att)): inpdi = " ".join([rD[x] for x in inpd[i]]) outdi = roD[outd[i]] print("input: {}\nattention: {}\nprediction: {}".format( inpdi, " ".join(["{:.1f}".format(x) for x in att[i]]), outdi))
def run(lr=OPT_LR, batsize=100, epochs=1000, validinter=20, wreg=0.00000000001, dropout=0.1, embdim=50, encdim=50, numlayers=1, cuda=False, gpu=0, mode="flat", test=False, gendata=False): if gendata: loadret = load_jsons() pickle.dump(loadret, open("loadcache.flat.pkl", "w"), protocol=pickle.HIGHEST_PROTOCOL) else: settings = locals().copy() logger = q.Logger(prefix="rank_lstm") logger.save_settings(**settings) device = torch.device("cpu") if cuda: device = torch.device("cuda", gpu) tt = q.ticktock("script") # region DATA tt.tick("loading data") qsm, csm, goldchainids, badchainids = pickle.load( open("loadcache.{}.pkl".format(mode))) eids = np.arange(0, len(goldchainids)) data = [qsm.matrix, eids] traindata, validdata = q.datasplit(data, splits=(7, 3), random=False) validdata, testdata = q.datasplit(validdata, splits=(1, 2), random=False) trainloader = q.dataload(*traindata, batch_size=batsize, shuffle=True) input_feeder = FlatInpFeeder(csm.matrix, goldchainids, badchainids) def inp_bt(_qsm_batch, _eids_batch): golds_batch, bads_batch = input_feeder(_eids_batch) return _qsm_batch, golds_batch, bads_batch if test: # test input feeder eids = q.var(torch.arange(0, 10).long()).v _test_golds_batch, _test_bads_batch = input_feeder(eids) tt.tock("data loaded") # endregion # region MODEL dims = [encdim // 2] * numlayers question_encoder = FlatEncoder(embdim, dims, qsm.D, bidir=True) query_encoder = FlatEncoder(embdim, dims, csm.D, bidir=True) similarity = DotDistance() rankmodel = RankModel(question_encoder, query_encoder, similarity) scoremodel = ScoreModel(question_encoder, query_encoder, similarity) # endregion # region VALIDATION rankcomp = RankingComputer(scoremodel, validdata[1], validdata[0], csm.matrix, goldchainids, badchainids) # endregion # region TRAINING optim = torch.optim.Adam(q.params_of(rankmodel), lr=lr, weight_decay=wreg) trainer = q.trainer(rankmodel).on(trainloader).loss(1)\ .set_batch_transformer(inp_bt).optimizer(optim).device(device) def validation_function(): rankmetrics = rankcomp.compute(RecallAt(1, totaltrue=1), RecallAt(5, totaltrue=1), MRR()) ret = [] for rankmetric in rankmetrics: rankmetric = np.asarray(rankmetric) ret_i = rankmetric.mean() ret.append(ret_i) return "valid: " + " - ".join(["{:.4f}".format(x) for x in ret]) q.train(trainer, validation_function).run(epochs, validinter=validinter)
def run(lr=0.01, epochs=10, batsize=64, momentum=0.5, cuda=False, gpu=0, seed=1): settings = locals().copy() logger = q.Logger(prefix="mnist") logger.save_settings(**settings) torch.manual_seed(seed) if cuda: torch.cuda.set_device(gpu) torch.cuda.manual_seed(seed) kwargs = {} train_loader = torch.utils.data.DataLoader(datasets.MNIST( '../../datasets/mnist', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=batsize, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST( '../../datasets/mnist', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=batsize, shuffle=False, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum) trainer = q.trainer(model).on(train_loader)\ .loss(torch.nn.NLLLoss(), q.Accuracy())\ .optimizer(optim).cuda(cuda) validator = q.tester(model).on(test_loader)\ .loss(torch.nn.NLLLoss(), q.Accuracy())\ .cuda(cuda) logger.loglosses(trainer, "train.losses") logger.loglosses(validator, "valid.losses") q.train(trainer, validator).run(epochs)