def concentration_maximum_asset_for_year(year: int) -> HttpAsset: """Handle the maximum concentration "off-years".""" month = conc_max_month(year) month_abbr = calendar.month_abbr[month] return HttpAsset( id=f'maximum_concentration_{year}', urls= [('ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/geotiff' f'/{month:02d}_{month_abbr}/N_{year}{month:02d}_concentration_v3.0.tif' )], )
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset seismograph_stations = Dataset( id='seismograph_stations', assets=[ HttpAsset( id='only', urls=[ 'http://www.isc.ac.uk/registries/download/stations.kmz', ], ), ], metadata={ 'title': 'International Registry of Seismograph Stations (IR)', 'abstract': ("""The International Seismograph Station Registry (IR) has been jointly maintained by the International Seismological Centre (ISC) and the World Data Center for Seismology (NEIC/USGS) since the 1960s. At present there are over 26000 stations (including those already closed) with globally unique codes registered in the IR.""" ), 'citation': { 'text': ("""International Seismological Centre (2020), International Seismograph Station Registry (IR), https://doi.org/10.31905/EL3FQQ40"""), 'url': 'http://www.isc.ac.uk/registries/', },
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset velocity_mosaic = Dataset( id='velocity_mosaic', assets=[ HttpAsset( id='only', urls=[ 'http://its-live-data.jpl.nasa.gov.s3.amazonaws.com/velocity_mosaic/landsat/v00.0/static/GRE_G0120_0000.nc', ], ), ], metadata={ 'title': 'Regional Glacier and Ice Sheet Surface Velocities', 'abstract': ("""The Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project facilitates ice sheet, ice shelf and glacier research by providing a globally comprehensive and temporally dense multi-sensor record of land ice velocity and elevation with low latency."""), 'citation': { 'text': ("""Velocity data generated using auto-RIFT (Gardner et al., 2018) and provided by the NASA MEaSUREs ITS_LIVE project (Gardner et al., 2019). Gardner, A. S., M. A. Fahnestock, and T. A. Scambos, 2019 [Accessed on {{date_accessed}}]: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities. Data archived at National Snow and
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset undersea_features = Dataset( id='undersea_features', assets=[ HttpAsset( id='only', urls=[ 'https://www.ngdc.noaa.gov/gazetteer/feature/export?aoi=POLYGON%28%28-162.82882+39.14360%2C+120.79574+45.17504%2C+-1.80233+31.69553%2C+-68.42289+32.69612%2C+-162.82882+39.14360%29%29&name=&featureType=&proposerId=&discovererId=&meeting=&status=&format=shapefile', ], ), ], metadata={ 'title': 'IHO-IOC GEBCO Gazetteer of Undersea Feature Names', 'abstract': ("""The General Bathymetric Chart of the Oceans (GEBCO) Sub-Committee on Undersea Feature Names (SCUFN) maintains and makes available a digital gazetteer of the names, generic feature type, and geographic position of features on the seafloor. The gazetteer is available to view and download (http://www.ngdc.noaa.gov/gazetteer/) via a web map application, hosted by the International Hydrographic Organization Data Centre for Digital Bathymetry (IHO DCDB) co-located with the US National Centers for Environmental Information (NCEI)."""), 'citation': { 'text': ("""IHO-IOC GEBCO Gazetteer of Undersea Feature Names, www.gebco.net"""), 'url': 'https://www.gebco.net/data_and_products/undersea_feature_names/',
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset pangaea_ground_temperature = Dataset( id='pangaea_ground_temperature', assets=[ HttpAsset( id='25km', urls=[ 'http://store.pangaea.de/Publications/ObuJ-etal_2018/UiO_PEX_5.0_20181127_2000_2016_25km.nc', ], ), HttpAsset( id='10km', urls=[ 'http://store.pangaea.de/Publications/ObuJ-etal_2018/UiO_PEX_5.0_20181127_2000_2016_10km.nc', ], ), HttpAsset( id='5km', urls=[ 'http://store.pangaea.de/Publications/ObuJ-etal_2018/UiO_PEX_5.0_20181127_2000_2016_5km.nc', ], ), ], metadata={ 'title': 'Ground Temperature Map, 2000-2016, Northern Hemisphere Permafrost', 'abstract': ("""Original data information: The product provides modeled mean annual ground temperatures (MAGT) at the top of the permafrost for
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset geothermal_heat_flux = Dataset( id='geothermal_heat_flux', assets=[ HttpAsset( id='only', urls=[ 'https://ads.nipr.ac.jp/api/v1/metadata/A20180227-001/2.00/data/DATA?path=GHF_Greenland_Ver2.0_GridEPSG3413_05km.nc', ], ), ], metadata={ 'title': 'Geothermal heat flux distribution for the Greenland ice sheet, derived by combining a global representation and information from deep ice cores', 'abstract': ("""The data present a distribution of the geothermal heat flux (GHF) for Greenland, which is an update of two earlier versions by Greve (2005, Ann. Glaciol. 42) and Greve and Herzfeld (2013, Ann. Glaciol. 54). The GHF distribution is constructed in two steps. First, the global representation by Pollack et al. (1993, Rev. Geophys. 31) is scaled for the area of Greenland. Second, by means of a paleoclimatic simulation carried out with the ice sheet model SICOPOLIS, the GHF values for five deep ice core locations are modified such that observed and simulated basal temperatures match closely. The resulting GHF distribution generally features low values in the south and the north-west, whereas elevated values prevail in central North Greenland and towards the north-east. The original source data are provided as NetCDF files on two different grids (EPSG:3413 grid, Bamber grid) that have frequently been used
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset BASE_URL = 'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav' woa2018_temperature = Dataset( id='woa2018_temperature', assets=[ HttpAsset( id='seasonal_winter', urls=[ f'{BASE_URL}/0.25/woa18_decav_t13_04.nc', ], ), HttpAsset( id='seasonal_summer', urls=[ f'{BASE_URL}/0.25/woa18_decav_t15_04.nc', ], ), ], metadata={ 'title': 'WORLD OCEAN ATLAS 2018 Volume 1: Temperature', 'abstract': ( """From the World Ocean Atlas: This atlas consists of a description of data analysis procedures and horizontal maps of climatological distribution fields of temperature at selected standard depth levels of the World Ocean on one-degree and quarter-degree latitude-longitude grids. The aim of the maps is to illustrate large-scale characteristics of the distribution of ocean
MockOnlineLayerConfig = Layer(**mock_online_layer_cfg) _mock_http_asset_cfg = { 'id': _mock_asset_id, 'urls': ['https://foo.bar.com/data.zip'], } mock_raster_layer_cfg = { 'id': 'example_raster', 'title': 'Example raster', 'description': 'Example layer description.', 'tags': ['foo', 'bar', 'baz'], 'in_package': True, 'input': { 'dataset': { 'id': 'example_dataset', 'assets': [HttpAsset(**_mock_http_asset_cfg)], 'metadata': _mock_metadata, }, 'asset': HttpAsset(**_mock_http_asset_cfg), }, 'steps': [ { 'type': 'command', 'args': ['foo', 'bar'], }, ], } MockRasterLayerConfig = Layer(**mock_raster_layer_cfg) def _layer_node(cfg: Layer) -> LayerGroupNode:
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset utm_zones = Dataset( id='utm_zones', assets=[ HttpAsset( id='only', urls=[ 'http://sandbox.idre.ucla.edu/mapshare/data/world/data/utmzone.zip', ], ), ], metadata={ 'title': 'World UTM Zones', 'abstract': ("""World UTM Zones represents the Universal Transverse Mercator (UTM) zones of the world. The polygons represent the Universal Transverse Mercator (UTM) zones, which lie between 84 degrees North and 80 degrees South latitude. With few exceptions, they divide the world into sixty zones, each of which is six degrees of longitude wide. The zones are numbered from 1 through 60 eastward from 180 degrees West longitude. The zone characters designate rows that are 8 degrees of latitude high extending north and south from the equator with the exception of the northern-most row which is 12 degrees high."""), # Is this citation good enough? Find another source? 'citation': { 'text': ("""ESRI Data & Maps. 2015."""), 'url': 'https://apps.gis.ucla.edu/geodata/dataset/world_utm_zones',
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset wmm = Dataset( id='world_magnetic_model', assets=[ HttpAsset( id='geomagnetic_north_pole', urls=[ 'https://www.ngdc.noaa.gov/geomag/data/poles/WMM2020_NP.xy', ], ), HttpAsset( id='igrf_geomagnetic_north_pole', urls=[ 'https://www.ngdc.noaa.gov/geomag/data/poles/NP.xy', ], ), HttpAsset( id='geomagnetic_coordinates', urls=[ 'ftp://ftp.ngdc.noaa.gov/geomag/wmm/wmm2020/shapefiles/WMM2020_geomagnetic_coordinate_shapefiles.zip', # noqa:E501 ], ), HttpAsset( id='blackout_zones', urls=[ 'ftp://ftp.ngdc.noaa.gov/geomag/wmm/wmm2020/shapefiles/WMM2020-2025_BoZ_Shapefile.zip', # noqa:E501 ], ), *[
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset ice_cores = Dataset( id='ice_cores', assets=[ HttpAsset( id='only', urls=[ 'http://gis.ncdc.noaa.gov/kml/paleo_icecore.kmz', ], ), ], metadata={ 'title': 'Ice Cores', 'abstract': ("""Greenland ice core locations. Ice cores can provide records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment. Additional information is available in the 'description' attribute, including an ice core dataset URL. Data were accessed using the Google Earth Map Search Dataset. For details please see: http://www.ncdc.noaa.gov/paleo/icecore.html."""), 'citation': { 'text': ("""World Data Center (2020). Ice core locations. Download: http://gis.ncdc.noaa.gov/kml/paleo_icecore.kmz. Date accessed: {{date_accessed}}."""), 'url': 'http://www.ncdc.noaa.gov/paleo/icecore.html', },
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset arctic_dem = Dataset( id='arctic_dem', assets=[ HttpAsset( id='1km', urls=[ 'http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/1km/arcticdem_mosaic_1km_v3.0.tif', ], ), HttpAsset( id='500m', urls=[ 'http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/500m/arcticdem_mosaic_500m_v3.0.tif', ], ), HttpAsset( id='100m', # This shouldn't be necessary? verify_tls=False, urls=[ 'https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/100m/arcticdem_mosaic_100m_v3.0.tif', ], ), ], metadata={ 'title': 'Arctic DEM (1km mosaic)', 'abstract': (
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset icesheet_height_and_thickness_change = Dataset( id='icesheet_height_and_thickness_change', assets=[ HttpAsset( id='only', urls=[ 'https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/45388/ICESat1_ICESat2_mass_change.zip', ], ), ], metadata={ 'title': 'Ice-sheet height and thickness changes from ICESat to ICESat-2', 'abstract': ("""These data represent ice-column thickness-change-rate estimates based on data from NASA's ICESat and ICESat-2 satellites. These data aided the first estimates of ice-sheet mass change from these two missions, spanning the 16 years from 2003 to 2019, taking advantage of the high vertical and horizontal resolution of the two satellites' laser altimeters."""), 'citation': { 'text': ("""Smith, Ben; Fricker, Helen; Gardner, Alex; Medley, Brooke; Nilsson, Johan; Paolo, Fernando; Holschuh, Nicholas; Adusumilli, Susheel; Brunt, Kelly; Csatho, Bea; Harbeck, Kaitlin; Markus, Thorsten; Neumann, Thomas; Siegfried, Matthew; Zwally, H. Jay; NASA grant numbers: NNX15AE15G, NNX15AC80G, NNX16AM01G, NNX17AI03G. NASA Cryospheric Sciences and MEaSUREs programs.
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset geothermal_heat_flow = Dataset( id='geothermal_heat_flow', assets=[ # This is interpolated data. # TODO: is there anything special about the upsampling done here? HttpAsset( id='10km_map', urls=[ 'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/F9P03L/7WDXNF' ], ), # This is the native resolution HttpAsset( id='55km_map', urls=[ 'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/F9P03L/HJ7AIM' ], ), HttpAsset( id='heat_flow_measurements', urls=[ 'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/F9P03L/JMAXKV' ], ), ], metadata={ 'title': 'Greenland Geothermal Heat Flow Database and Map',
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset land_shape = Dataset( id='land_shape', assets=[ HttpAsset( id='only', urls=[ 'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_land.zip', ], ), ], metadata={ 'title': 'Natural Earth Land (10m)', 'abstract': ( """Natural Earth Land (Public Domain).""" ), 'citation': { 'text': ( """Made with Natural Earth""" ), 'url': 'https://github.com/nvkelso/natural-earth-vector/blob/master/LICENSE.md', }, }, ) ocean_shape = Dataset( id='ocean_shape', assets=[
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset future_icesheet_coverage = Dataset( id='future_icesheet_coverage', assets=[ HttpAsset( id='rcp_26', urls=[ 'https://arcticdata.io/metacat/d1/mn/v2/object/urn%3Auuid%3A61ff2294-4734-46ba-a0b0-845d69298131', ], ), HttpAsset( id='rcp_45', urls=[ 'https://arcticdata.io/metacat/d1/mn/v2/object/urn%3Auuid%3Aed2d7235-2193-4ba3-a98f-f09d871199a1', ], ), HttpAsset( id='rcp_85', urls=[ 'https://arcticdata.io/metacat/d1/mn/v2/object/urn%3Auuid%3Aecec7b68-a544-4575-8731-47d60b73215f', ], ), ], metadata={ 'title': 'Contribution of the Greenland Ice Sheet to sea-level over the next millennium using Large Ensemble Simulations, spatial time series, 2008-3007.', 'abstract': ("""Citation publication abstract: The Greenland Ice Sheet holds around 7.2 meters of sea-level equivalent. In recent decades rising
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset monthly_albedo = Dataset( id='monthly_albedo', assets=[ HttpAsset( id='2018_07', urls=[ 'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/URJ2VK/XXQUSC' ], ), HttpAsset( id='2019_07', urls=[ 'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/URJ2VK/6YZNSZ' ], ), ], metadata={ 'title': 'SICE 1 km broadband albedo monthly averages and visualisations', 'abstract': ("""We present a simplified atmospheric correction algorithm for snow/ice albedo retrievals using single view satellite measurements. The validation of the technique is performed using Ocean and Land Colour Instrument (OLCI) on board Copernicus Sentinel-3 satellite and ground spectral or broadband albedo measurements from locations on the Greenland ice sheet and in the French Alps. Through comparison with independent ground observations, the technique is shown to perform accurately in a
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset bas_coastlines = Dataset( id='bas_coastlines', assets=[ HttpAsset( id='only', urls=[ 'https://ramadda.data.bas.ac.uk/repository/entry/get/Greenland_coast.zip?entryid=synth:8cecde06-8474-4b58-a9cb-b820fa4c9429:L0dyZWVubGFuZF9jb2FzdC56aXA=', ], ), ], metadata={ 'title': ( 'The coastline of Kalaallit Nunaat/ Greenland available as a shapefile' ' and geopackage, covering the main land and islands, with glacier' ' fronts updated as of 2017.' ), 'abstract': ( """A coastline of Kalaallit Nunaat/ Greenland covering all land and islands, produced in 2017 for the BAS map 'Greenland and the European Arctic'. The dataset was produced by extracting the land mask from the Greenland BedMachine dataset and manually editing anomalous data. Some missing islands were added and glacier fronts were updated using 2017 satellite imagery. The dataset can be used for cartography, analysis and as a mask, amongst other uses. At very large scales, the data will appear angular due to the nature of being extracted from a raster with 150 m cell size, but the dataset should be suitable for use at most scales and can be edited by the
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset tectonic_plates = Dataset( id='tectonic_plates', assets=[ HttpAsset( id='only', urls=[ 'https://github.com/fraxen/tectonicplates/archive/339b0c5.zip', ], ), ], metadata={ 'title': 'World tectonic plates and boundaries', 'abstract': ("""As per data source - This dataset is a conversion of the dataset originally published in the paper 'An updated digital model of plate boundaries' by Peter Bird (Geochemistry Geophysics Geosystems, 4(3), 1027, doi:10.1029/2001GC000252 [http://scholar.google.se/scholar?cluster=1268723667321132798], 2003). To bring this dataset into the modern age, the original data has been parsed, cleaned, and verified using ArcGIS 10.2 and converted to shape files. The dataset presents tectonic plates and their boundaries, and in addition orogens and information about the boundaries. The data is useful for geological applications, analysis and education, and should be easy to use in any modern GIS software application. For information on the fields and values, please refer to the [original](http://peterbird.name/oldFTP/PB2002/2001GC000252_r eadme.txt) documentation and the scientific article.
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset nga_arctic_sea_routes = Dataset( id='nga_arctic_sea_routes', assets=[ HttpAsset( id='only', urls=[ ('https://opendata.arcgis.com/datasets/67760a7f85614902ac19fa6ff643b9fa_0.zip?' 'outSR=%7B%22latestWkid%22%3A102018%2C%22wkid%22%3A102018%7D' ), ], ), ], metadata={ 'title': 'Arctic Sea Routes', 'abstract': ("""Arctic lines of general transportation. In the case of the Northern Sea Route, the route is based on the actual route used by Russian icebreakers and cargo ships. The Northwest Passage is based on the channels that would be able to support large cargo ships. The transpolar route is a hypothetical route that could be used either as a result of ice-free summers or the extensive use of icebreakers and ice-hardened ships."""), 'citation': { 'text': ("""National Geospatial-Intelligence Agency (NGA)"""), 'url': 'https://arctic-nga.opendata.arcgis.com/datasets/67760a7f85614902ac19fa6ff643b9fa_0', },
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset ne_timezones = Dataset( id='ne_timezones', assets=[ HttpAsset( id='only', urls=[ 'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_time_zones.zip', ], ), ], metadata={ 'title': 'Timezones', 'abstract': ("""Time zones primarily derive from the Central Intelligence Agency map of Time Zones, downloaded from the World Factbook website May 2012. Boundaries were adjusted to fit the Natural Earth line work at a scale of 1:10 million and to follow twelve nautical mile territorial sea boundary lines when running along coasts. Additional research was performed based on recent news to update several areas including the international dateline and time zone adjustments for Samoa and Tokelau and the discarding of daylight savings time in Russia. Data attributes include time offset from Coordinated Universal Time (UTC, aka “zulu” time) and map color codes for a 6-up and 8-up styling."""), 'citation': {
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset gshhg_coastlines = Dataset( id='gshhg_coastlines', assets=[ HttpAsset( id='only', urls=[ 'http://www.soest.hawaii.edu/pwessel/gshhg/gshhg-shp-2.3.7.zip', ], ), ], metadata={ 'title': ('GSHHG: A Global Self-consistent, Hierarchical, High-resolution' ' Geography Database'), 'abstract': ("""We present a high-resolution geography data set amalgamated from three data bases in the public domain: World Vector Shorelines (WVS). CIA World Data Bank II (WDBII). Atlas of the Cryosphere (AC). The WVS is our basis for shorelines except for Antarctica while the WDBII is the basis for lakes, although there are instances where differences in coastline representations necessitated adding WDBII islands to GSHHG. The WDBII source also provides all political borders and rivers. The addition of AC since 2.3.0 allows us to offer two choices for Antarctica coastlines: Ice-front or Grounding
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset gc_net_promice_stations = Dataset( id='gc_net_promice_stations', assets=[ HttpAsset( id='promice', urls=[ 'https://raw.githubusercontent.com/GEUS-PROMICE/map_GC-Net_PROMICE_kml/59455ddb50f7eeb1b8c5a5fdd7f80bfd548a0c92/input_data/PROMICE_info_from_GPS_data_2017-2018.csv', ], ), HttpAsset( id='promice_former', urls=[ 'https://raw.githubusercontent.com/GEUS-PROMICE/map_GC-Net_PROMICE_kml/59455ddb50f7eeb1b8c5a5fdd7f80bfd548a0c92/input_data/PROMICE_info_from_GPS_data_2017-2018_former_sites.csv', ], ), HttpAsset( id='gc_net', urls=[ 'https://raw.githubusercontent.com/GEUS-PROMICE/map_GC-Net_PROMICE_kml/59455ddb50f7eeb1b8c5a5fdd7f80bfd548a0c92/input_data/GCN%20info%20ca.2000.csv', ], ), ], metadata={ 'title': 'Map of GC-Net and PROMICE locations', 'abstract': ("""GitHub data description (creator: jasonebox): For PROMICE, I use a 2017-2018 average of station GPS data. I added an updated position
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset # TODO: How to create a layer using this data? The NETCDF files are composed of # daily runoff amounts predicted by a climate model for each basin in the # streams_outlets_basins dataset. promice_runoff = Dataset( id='promice_runoff', assets=[ HttpAsset( id=f'land_mar_{year}', urls=[ f'https://promice.org/PromiceDataPortal/api/download/0f9dc69b-2e3c-43a2-a928-36fbb88d7433/version_01/runoff/coast/runoff_land_MAR_{year}.nc', ], ) for year in range(2010, 2017 + 1) ], metadata={ 'title': 'Map of GC-Net and PROMICE locations', 'abstract': ("""High resolution map of Greenland hydrologic outlets, basins, and streams, and a 1979 through 2017 time series of Greenland liquid water runoff for each outlet."""), 'citation': { 'text': ("""Mankoff et al. - submitted to ESSD."""), 'url': 'https://doi.org/10.22008/promice/data/freshwater_runoff/v01', }, }, )
Greenland. Web: https://kort.nunagis.gl/portal/home/item.html?id=b70a43b814e84 78c9514208548ca5f61. Date accessed: {{date_accessed}}."""), 'url': 'https://kort.nunagis.gl/portal/home/item.html?id=b70a43b814e8478c9514208548ca5f61', }, }, ) ne_states_provinces = Dataset( id='ne_states_provinces', assets=[ HttpAsset( id='only', urls=[ 'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_1_states_provinces.zip', ], ), ], metadata={ 'title': 'Admin 1 – States, Provinces', 'abstract': ("""Internal, first-order administrative boundaries and polygons for all but a few tiny countries. Includes name attributes (including diacritical marks), name variants, and some statistical codes (FIPS, ISO, HASC)."""), 'citation': { 'text': ("""Made with Natural Earth"""), 'url': 'https://github.com/nvkelso/natural-earth-vector/blob/master/LICENSE.md',
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset continental_shelf = Dataset( id='continental_shelf', assets=[ HttpAsset( id='north_points', urls=[ 'http://tuvalu.grida.no/ecs/dnk_76_2014_points.zip', ], ), HttpAsset( id='north_lines', urls=[ 'http://tuvalu.grida.no/ecs/dnk_76_2014_lines.zip', ], ), HttpAsset( id='north_polygons', urls=[ 'http://tuvalu.grida.no/ecs/dnk_76_2014_polygons.zip', ], ), HttpAsset( id='northeast_points', urls=[ 'http://tuvalu.grida.no/ecs/dnk_68_2013_points.zip', ], ), HttpAsset(
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset mineral_and_hydrocarbon_licenses = Dataset( id='mineral_and_hydrocarbon_licenses', assets=[ HttpAsset( id='mcas_mlsa_public_all', urls=[ 'https://gis.govmin.gl/geoserver/MLSA/ows?service=WFS&version=1.0.0&request=GetFeature&outputFormat=shape-zip&typeNames=MLSA:mcas_mlsa_public_all', ], ), HttpAsset( id='mcas_mlsa_public_historic', urls=[ 'https://gis.govmin.gl/geoserver/MLSA/ows?service=WFS&version=1.0.0&request=GetFeature&outputFormat=shape-zip&typeNames=MLSA:mcas_mlsa_public_historic', ], ), ], metadata={ 'title': 'Mineral and hydrocarbon licenses', 'abstract': ( """Mineral and hydrocarbon license data, including historic public licenses and public licenses. License data is sourced from the Mineral Resource Authority, Government of Greenland using their GeoServer version 2.14.1 (https://gis.govmin.gl/geoserver/web/).""" ), 'citation': { 'text': 'Government of Greenland/GINR', 'url': '',
MAX_CONCENTRATION_YEARS, MIN_CONCENTRATION_YEARS, concentration_maximum_asset_for_year, ) from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset seaice_index = Dataset( id='seaice_index', assets=[ *[ HttpAsset( id=f'median_extent_line_{month:02d}', urls=[( 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/shapefiles/shp_median' f'/median_extent_N_{month:02d}_1981-2010_polyline_v3.0.zip' )], ) for month in range(1, 12 + 1) ], *[ HttpAsset( id=f'minimum_concentration_{year}', urls=[( 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/geotiff' f'/09_Sep/N_{year}09_concentration_v3.0.tif' )], ) for year in MIN_CONCENTRATION_YEARS ], *[ concentration_maximum_asset_for_year(year) for year in MAX_CONCENTRATION_YEARS
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset caff_murre_colonies = Dataset( id='caff_murre_colonies', assets=[ HttpAsset( id='only', urls=[ 'https://abds.is/index.php/publications/the-distribution-of-thick-billed-and-common-murre-colonies-in-the-north/download', ], ), ], metadata={ 'title': 'The distribution of thick-billed and common murre colonies in the North.', 'abstract': ("""Murres are among the most abundant seabirds in the Northern Hemisphere with a population in excess of ten million adults. No obvious global trend has been identified but the majority of regional populations have shown declines over the past three decades. While they are currently abundant, climate change is projected to pose problems to murres in the future, especially for the more northern species, the thick-billed murre, which is strongly associated with sea ice. Other threats include fisheries interactions, over-exploitation, contaminants, and oil spills, the latter becoming more important if climate change expands shipping and hydrocarbon development in the Arctic."""), 'citation': { 'text': ("""Arctic Biodiversity Trends 2010 – Selected indicators of
from qgreenland.models.config.asset import HttpAsset from qgreenland.models.config.dataset import Dataset bathymetric_chart = Dataset( id='bathymetric_chart', assets=[ HttpAsset( id='only', urls=[ 'https://www.bodc.ac.uk/data/open_download/ibcao/ibcao_v4_400m_ice/cfnetcdf/', ], ), ], metadata={ 'title': 'Bathymetric Chart of the Arctic Ocean (IBCAO)', 'abstract': ("""The goal of the IBCAO initiative is to develop a digital database that contains all available bathymetric data north of 64° North, for use by mapmakers, researchers, institutions, and others whose work requires a detailed and accurate knowledge of the depth and the shape of the Arctic seabed."""), 'citation': { 'text': ("""GEBCO Compilation Group (2020) GEBCO 2020 Grid (doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9)"""), 'url': 'https://www.gebco.net/data_and_products/gridded_bathymetry_data/arctic_ocean/', }, }, )