예제 #1
0
def concentration_maximum_asset_for_year(year: int) -> HttpAsset:
    """Handle the maximum concentration "off-years"."""
    month = conc_max_month(year)
    month_abbr = calendar.month_abbr[month]

    return HttpAsset(
        id=f'maximum_concentration_{year}',
        urls=
        [('ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/geotiff'
          f'/{month:02d}_{month_abbr}/N_{year}{month:02d}_concentration_v3.0.tif'
          )],
    )
예제 #2
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

seismograph_stations = Dataset(
    id='seismograph_stations',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'http://www.isc.ac.uk/registries/download/stations.kmz',
            ],
        ),
    ],
    metadata={
        'title':
        'International Registry of Seismograph Stations (IR)',
        'abstract':
        ("""The International Seismograph Station Registry (IR) has been
            jointly maintained by the International Seismological Centre (ISC)
            and the World Data Center for Seismology (NEIC/USGS) since the
            1960s. At present there are over 26000 stations (including those
            already closed) with globally unique codes registered in the IR."""
         ),
        'citation': {
            'text':
            ("""International Seismological Centre (2020), International
                Seismograph Station Registry (IR),
                https://doi.org/10.31905/EL3FQQ40"""),
            'url':
            'http://www.isc.ac.uk/registries/',
        },
예제 #3
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

velocity_mosaic = Dataset(
    id='velocity_mosaic',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'http://its-live-data.jpl.nasa.gov.s3.amazonaws.com/velocity_mosaic/landsat/v00.0/static/GRE_G0120_0000.nc',
            ],
        ),
    ],
    metadata={
        'title':
        'Regional Glacier and Ice Sheet Surface Velocities',
        'abstract':
        ("""The Inter-mission Time Series of Land Ice Velocity and Elevation
            (ITS_LIVE) project facilitates ice sheet, ice shelf and glacier
            research by providing a globally comprehensive and temporally dense
            multi-sensor record of land ice velocity and elevation with low
            latency."""),
        'citation': {
            'text':
            ("""Velocity data generated using auto-RIFT (Gardner et al.,
                2018) and provided by the NASA MEaSUREs ITS_LIVE project
                (Gardner et al., 2019).

                Gardner, A. S., M. A. Fahnestock, and T. A. Scambos, 2019
                [Accessed on {{date_accessed}}]: ITS_LIVE Regional Glacier and
                Ice Sheet Surface Velocities. Data archived at National Snow and
예제 #4
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

undersea_features = Dataset(
    id='undersea_features',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://www.ngdc.noaa.gov/gazetteer/feature/export?aoi=POLYGON%28%28-162.82882+39.14360%2C+120.79574+45.17504%2C+-1.80233+31.69553%2C+-68.42289+32.69612%2C+-162.82882+39.14360%29%29&name=&featureType=&proposerId=&discovererId=&meeting=&status=&format=shapefile',
            ],
        ),
    ],
    metadata={
        'title':
        'IHO-IOC GEBCO Gazetteer of Undersea Feature Names',
        'abstract':
        ("""The General Bathymetric Chart of the Oceans (GEBCO) Sub-Committee
            on Undersea Feature Names (SCUFN) maintains and makes available a
            digital gazetteer of the names, generic feature type, and geographic
            position of features on the seafloor. The gazetteer is available to
            view and download (http://www.ngdc.noaa.gov/gazetteer/) via a web
            map application, hosted by the International Hydrographic
            Organization Data Centre for Digital Bathymetry (IHO DCDB)
            co-located with the US National Centers for Environmental
            Information (NCEI)."""),
        'citation': {
            'text': ("""IHO-IOC GEBCO Gazetteer of Undersea Feature Names,
                www.gebco.net"""),
            'url':
            'https://www.gebco.net/data_and_products/undersea_feature_names/',
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

pangaea_ground_temperature = Dataset(
    id='pangaea_ground_temperature',
    assets=[
        HttpAsset(
            id='25km',
            urls=[
                'http://store.pangaea.de/Publications/ObuJ-etal_2018/UiO_PEX_5.0_20181127_2000_2016_25km.nc',
            ],
        ),
        HttpAsset(
            id='10km',
            urls=[
                'http://store.pangaea.de/Publications/ObuJ-etal_2018/UiO_PEX_5.0_20181127_2000_2016_10km.nc',
            ],
        ),
        HttpAsset(
            id='5km',
            urls=[
                'http://store.pangaea.de/Publications/ObuJ-etal_2018/UiO_PEX_5.0_20181127_2000_2016_5km.nc',
            ],
        ),
    ],
    metadata={
        'title':
        'Ground Temperature Map, 2000-2016, Northern Hemisphere Permafrost',
        'abstract':
        ("""Original data information: The product provides modeled mean
            annual ground temperatures (MAGT) at the top of the permafrost for
예제 #6
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

geothermal_heat_flux = Dataset(
    id='geothermal_heat_flux',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://ads.nipr.ac.jp/api/v1/metadata/A20180227-001/2.00/data/DATA?path=GHF_Greenland_Ver2.0_GridEPSG3413_05km.nc',
            ],
        ),
    ],
    metadata={
        'title':
        'Geothermal heat flux distribution for the Greenland ice sheet, derived by combining a global representation and information from deep ice cores',
        'abstract':
        ("""The data present a distribution of the geothermal heat flux (GHF)
            for Greenland, which is an update of two earlier versions by Greve
            (2005, Ann. Glaciol. 42) and Greve and Herzfeld (2013, Ann. Glaciol.
            54). The GHF distribution is constructed in two steps. First, the
            global representation by Pollack et al. (1993, Rev. Geophys. 31) is
            scaled for the area of Greenland. Second, by means of a
            paleoclimatic simulation carried out with the ice sheet model
            SICOPOLIS, the GHF values for five deep ice core locations are
            modified such that observed and simulated basal temperatures match
            closely. The resulting GHF distribution generally features low
            values in the south and the north-west, whereas elevated values
            prevail in central North Greenland and towards the north-east. The
            original source data are provided as NetCDF files on two different
            grids (EPSG:3413 grid, Bamber grid) that have frequently been used
예제 #7
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset


BASE_URL = 'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav'

woa2018_temperature = Dataset(
    id='woa2018_temperature',
    assets=[
        HttpAsset(
            id='seasonal_winter',
            urls=[
                f'{BASE_URL}/0.25/woa18_decav_t13_04.nc',
            ],
        ),
        HttpAsset(
            id='seasonal_summer',
            urls=[
                f'{BASE_URL}/0.25/woa18_decav_t15_04.nc',
            ],
        ),
    ],
    metadata={
        'title': 'WORLD OCEAN ATLAS 2018 Volume 1: Temperature',
        'abstract': (
            """From the World Ocean Atlas: This atlas consists of a description
            of data analysis procedures and horizontal maps of climatological
            distribution fields of temperature at selected standard depth levels
            of the World Ocean on one-degree and quarter-degree
            latitude-longitude grids.  The aim of the maps is to illustrate
            large-scale characteristics of the distribution of ocean
예제 #8
0
MockOnlineLayerConfig = Layer(**mock_online_layer_cfg)

_mock_http_asset_cfg = {
    'id': _mock_asset_id,
    'urls': ['https://foo.bar.com/data.zip'],
}
mock_raster_layer_cfg = {
    'id': 'example_raster',
    'title': 'Example raster',
    'description': 'Example layer description.',
    'tags': ['foo', 'bar', 'baz'],
    'in_package': True,
    'input': {
        'dataset': {
            'id': 'example_dataset',
            'assets': [HttpAsset(**_mock_http_asset_cfg)],
            'metadata': _mock_metadata,
        },
        'asset': HttpAsset(**_mock_http_asset_cfg),
    },
    'steps': [
        {
            'type': 'command',
            'args': ['foo', 'bar'],
        },
    ],
}
MockRasterLayerConfig = Layer(**mock_raster_layer_cfg)


def _layer_node(cfg: Layer) -> LayerGroupNode:
예제 #9
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

utm_zones = Dataset(
    id='utm_zones',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'http://sandbox.idre.ucla.edu/mapshare/data/world/data/utmzone.zip',
            ],
        ),
    ],
    metadata={
        'title':
        'World UTM Zones',
        'abstract':
        ("""World UTM Zones represents the Universal Transverse Mercator
            (UTM) zones of the world. The polygons represent the Universal
            Transverse Mercator (UTM) zones, which lie between 84 degrees North
            and 80 degrees South latitude. With few exceptions, they divide the
            world into sixty zones, each of which is six degrees of longitude
            wide. The zones are numbered from 1 through 60 eastward from 180
            degrees West longitude. The zone characters designate rows that are
            8 degrees of latitude high extending north and south from the
            equator with the exception of the northern-most row which is 12
            degrees high."""),
        # Is this citation good enough? Find another source?
        'citation': {
            'text': ("""ESRI Data & Maps. 2015."""),
            'url': 'https://apps.gis.ucla.edu/geodata/dataset/world_utm_zones',
예제 #10
0
파일: wmm.py 프로젝트: nsidc/qgreenland
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

wmm = Dataset(
    id='world_magnetic_model',
    assets=[
        HttpAsset(
            id='geomagnetic_north_pole',
            urls=[
                'https://www.ngdc.noaa.gov/geomag/data/poles/WMM2020_NP.xy',
            ],
        ),
        HttpAsset(
            id='igrf_geomagnetic_north_pole',
            urls=[
                'https://www.ngdc.noaa.gov/geomag/data/poles/NP.xy',
            ],
        ),
        HttpAsset(
            id='geomagnetic_coordinates',
            urls=[
                'ftp://ftp.ngdc.noaa.gov/geomag/wmm/wmm2020/shapefiles/WMM2020_geomagnetic_coordinate_shapefiles.zip',  # noqa:E501
            ],
        ),
        HttpAsset(
            id='blackout_zones',
            urls=[
                'ftp://ftp.ngdc.noaa.gov/geomag/wmm/wmm2020/shapefiles/WMM2020-2025_BoZ_Shapefile.zip',  # noqa:E501
            ],
        ),
        *[
예제 #11
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

ice_cores = Dataset(
    id='ice_cores',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'http://gis.ncdc.noaa.gov/kml/paleo_icecore.kmz',
            ],
        ),
    ],
    metadata={
        'title':
        'Ice Cores',
        'abstract':
        ("""Greenland ice core locations. Ice cores can provide records of
            past temperature, precipitation, atmospheric trace gases, and other
            aspects of climate and environment. Additional information is
            available in the 'description' attribute, including an ice core
            dataset URL. Data were accessed using the Google Earth Map Search
            Dataset. For details please see:
            http://www.ncdc.noaa.gov/paleo/icecore.html."""),
        'citation': {
            'text': ("""World Data Center (2020). Ice core locations. Download:
                http://gis.ncdc.noaa.gov/kml/paleo_icecore.kmz. Date accessed:
                {{date_accessed}}."""),
            'url':
            'http://www.ncdc.noaa.gov/paleo/icecore.html',
        },
예제 #12
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset


arctic_dem = Dataset(
    id='arctic_dem',
    assets=[
        HttpAsset(
            id='1km',
            urls=[
                'http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/1km/arcticdem_mosaic_1km_v3.0.tif',
            ],
        ),
        HttpAsset(
            id='500m',
            urls=[
                'http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/500m/arcticdem_mosaic_500m_v3.0.tif',
            ],
        ),
        HttpAsset(
            id='100m',
            # This shouldn't be necessary?
            verify_tls=False,
            urls=[
                'https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/100m/arcticdem_mosaic_100m_v3.0.tif',
            ],
        ),
    ],
    metadata={
        'title': 'Arctic DEM (1km mosaic)',
        'abstract': (
예제 #13
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

icesheet_height_and_thickness_change = Dataset(
    id='icesheet_height_and_thickness_change',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/45388/ICESat1_ICESat2_mass_change.zip',
            ],
        ),
    ],
    metadata={
        'title':
        'Ice-sheet height and thickness changes from ICESat to ICESat-2',
        'abstract':
        ("""These data represent ice-column thickness-change-rate estimates
            based on data from NASA's ICESat and ICESat-2 satellites. These data
            aided the first estimates of ice-sheet mass change from these two
            missions, spanning the 16 years from 2003 to 2019, taking advantage
            of the high vertical and horizontal resolution of the two
            satellites' laser altimeters."""),
        'citation': {
            'text':
            ("""Smith, Ben; Fricker, Helen; Gardner, Alex; Medley, Brooke;
                Nilsson, Johan; Paolo, Fernando; Holschuh, Nicholas; Adusumilli,
                Susheel; Brunt, Kelly; Csatho, Bea; Harbeck, Kaitlin; Markus,
                Thorsten; Neumann, Thomas; Siegfried, Matthew; Zwally, H. Jay;
                NASA grant numbers: NNX15AE15G, NNX15AC80G, NNX16AM01G,
                NNX17AI03G. NASA Cryospheric Sciences and MEaSUREs programs.
예제 #14
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

geothermal_heat_flow = Dataset(
    id='geothermal_heat_flow',
    assets=[
        # This is interpolated data.
        # TODO: is there anything special about the upsampling done here?
        HttpAsset(
            id='10km_map',
            urls=[
                'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/F9P03L/7WDXNF'
            ],
        ),
        # This is the native resolution
        HttpAsset(
            id='55km_map',
            urls=[
                'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/F9P03L/HJ7AIM'
            ],
        ),
        HttpAsset(
            id='heat_flow_measurements',
            urls=[
                'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/F9P03L/JMAXKV'
            ],
        ),
    ],
    metadata={
        'title':
        'Greenland Geothermal Heat Flow Database and Map',
예제 #15
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset


land_shape = Dataset(
    id='land_shape',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_land.zip',
            ],
        ),
    ],
    metadata={
        'title': 'Natural Earth Land (10m)',
        'abstract': (
            """Natural Earth Land (Public Domain)."""
        ),
        'citation': {
            'text': (
                """Made with Natural Earth"""
            ),
            'url': 'https://github.com/nvkelso/natural-earth-vector/blob/master/LICENSE.md',
        },
    },
)

ocean_shape = Dataset(
    id='ocean_shape',
    assets=[
예제 #16
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

future_icesheet_coverage = Dataset(
    id='future_icesheet_coverage',
    assets=[
        HttpAsset(
            id='rcp_26',
            urls=[
                'https://arcticdata.io/metacat/d1/mn/v2/object/urn%3Auuid%3A61ff2294-4734-46ba-a0b0-845d69298131',
            ],
        ),
        HttpAsset(
            id='rcp_45',
            urls=[
                'https://arcticdata.io/metacat/d1/mn/v2/object/urn%3Auuid%3Aed2d7235-2193-4ba3-a98f-f09d871199a1',
            ],
        ),
        HttpAsset(
            id='rcp_85',
            urls=[
                'https://arcticdata.io/metacat/d1/mn/v2/object/urn%3Auuid%3Aecec7b68-a544-4575-8731-47d60b73215f',
            ],
        ),
    ],
    metadata={
        'title':
        'Contribution of the Greenland Ice Sheet to sea-level over the next millennium using Large Ensemble Simulations, spatial time series, 2008-3007.',
        'abstract':
        ("""Citation publication abstract: The Greenland Ice Sheet holds
            around 7.2 meters of sea-level equivalent. In recent decades rising
예제 #17
0
파일: albedo.py 프로젝트: nsidc/qgreenland
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

monthly_albedo = Dataset(
    id='monthly_albedo',
    assets=[
        HttpAsset(
            id='2018_07',
            urls=[
                'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/URJ2VK/XXQUSC'
            ],
        ),
        HttpAsset(
            id='2019_07',
            urls=[
                'https://dataverse01.geus.dk/api/access/datafile/:persistentId?persistentId=doi:10.22008/FK2/URJ2VK/6YZNSZ'
            ],
        ),
    ],
    metadata={
        'title':
        'SICE 1 km broadband albedo monthly averages and visualisations',
        'abstract':
        ("""We present a simplified atmospheric correction algorithm for
            snow/ice albedo retrievals using single view satellite
            measurements. The validation of the technique is performed using
            Ocean and Land Colour Instrument (OLCI) on board Copernicus
            Sentinel-3 satellite and ground spectral or broadband albedo
            measurements from locations on the Greenland ice sheet and in the
            French Alps. Through comparison with independent ground
            observations, the technique is shown to perform accurately in a
예제 #18
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset


bas_coastlines = Dataset(
    id='bas_coastlines',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://ramadda.data.bas.ac.uk/repository/entry/get/Greenland_coast.zip?entryid=synth:8cecde06-8474-4b58-a9cb-b820fa4c9429:L0dyZWVubGFuZF9jb2FzdC56aXA=',
            ],
        ),
    ],
    metadata={
        'title': (
            'The coastline of Kalaallit Nunaat/ Greenland available as a shapefile'
            ' and geopackage, covering the main land and islands, with glacier'
            ' fronts updated as of 2017.'
        ),
        'abstract': (
            """A coastline of Kalaallit Nunaat/ Greenland covering all land and
            islands, produced in 2017 for the BAS map 'Greenland and the
            European Arctic'. The dataset was produced by extracting the land
            mask from the Greenland BedMachine dataset and manually editing
            anomalous data. Some missing islands were added and glacier fronts
            were updated using 2017 satellite imagery. The dataset can be used
            for cartography, analysis and as a mask, amongst other uses. At very
            large scales, the data will appear angular due to the nature of
            being extracted from a raster with 150 m cell size, but the dataset
            should be suitable for use at most scales and can be edited by the
예제 #19
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

tectonic_plates = Dataset(
    id='tectonic_plates',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://github.com/fraxen/tectonicplates/archive/339b0c5.zip',
            ],
        ),
    ],
    metadata={
        'title':
        'World tectonic plates and boundaries',
        'abstract':
        ("""As per data source - This dataset is a conversion of the dataset
            originally published in the paper 'An updated digital model of plate
            boundaries' by Peter Bird (Geochemistry Geophysics Geosystems, 4(3),
            1027, doi:10.1029/2001GC000252
            [http://scholar.google.se/scholar?cluster=1268723667321132798],
            2003). To bring this dataset into the modern age, the original data
            has been parsed, cleaned, and verified using ArcGIS 10.2 and
            converted to shape files. The dataset presents tectonic plates and
            their boundaries, and in addition orogens and information about the
            boundaries. The data is useful for geological applications, analysis
            and education, and should be easy to use in any modern GIS software
            application. For information on the fields and values, please refer
            to the [original](http://peterbird.name/oldFTP/PB2002/2001GC000252_r
            eadme.txt) documentation and the scientific article.
예제 #20
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

nga_arctic_sea_routes = Dataset(
    id='nga_arctic_sea_routes',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                ('https://opendata.arcgis.com/datasets/67760a7f85614902ac19fa6ff643b9fa_0.zip?'
                 'outSR=%7B%22latestWkid%22%3A102018%2C%22wkid%22%3A102018%7D'
                 ),
            ],
        ),
    ],
    metadata={
        'title':
        'Arctic Sea Routes',
        'abstract':
        ("""Arctic lines of general transportation. In the case of the
            Northern Sea Route, the route is based on the actual route used by
            Russian icebreakers and cargo ships. The Northwest Passage is based
            on the channels that would be able to support large cargo ships. The
            transpolar route is a hypothetical route that could be used either
            as a result of ice-free summers or the extensive use of icebreakers
            and ice-hardened ships."""),
        'citation': {
            'text': ("""National Geospatial-Intelligence Agency (NGA)"""),
            'url':
            'https://arctic-nga.opendata.arcgis.com/datasets/67760a7f85614902ac19fa6ff643b9fa_0',
        },
예제 #21
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

ne_timezones = Dataset(
    id='ne_timezones',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_time_zones.zip',
            ],
        ),
    ],
    metadata={
        'title':
        'Timezones',
        'abstract':
        ("""Time zones primarily derive from the Central Intelligence Agency
            map of Time Zones, downloaded from the World Factbook website May
            2012. Boundaries were adjusted to fit the Natural Earth line work at
            a scale of 1:10 million and to follow twelve nautical mile
            territorial sea boundary lines when running along coasts. Additional
            research was performed based on recent news to update several areas
            including the international dateline and time zone adjustments for
            Samoa and Tokelau and the discarding of daylight savings time in
            Russia.

            Data attributes include time offset from Coordinated Universal Time
            (UTC, aka “zulu” time) and map color codes for a 6-up and 8-up
            styling."""),
        'citation': {
예제 #22
0
파일: gshhg.py 프로젝트: nsidc/qgreenland
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

gshhg_coastlines = Dataset(
    id='gshhg_coastlines',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'http://www.soest.hawaii.edu/pwessel/gshhg/gshhg-shp-2.3.7.zip',
            ],
        ),
    ],
    metadata={
        'title':
        ('GSHHG: A Global Self-consistent, Hierarchical, High-resolution'
         ' Geography Database'),
        'abstract':
        ("""We present a high-resolution geography data set amalgamated from
            three data bases in the public domain:

                World Vector Shorelines (WVS).
                CIA World Data Bank II (WDBII).
                Atlas of the Cryosphere (AC).

            The WVS is our basis for shorelines except for Antarctica while the
            WDBII is the basis for lakes, although there are instances where
            differences in coastline representations necessitated adding WDBII
            islands to GSHHG. The WDBII source also provides all political
            borders and rivers. The addition of AC since 2.3.0 allows us to
            offer two choices for Antarctica coastlines: Ice-front or Grounding
예제 #23
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

gc_net_promice_stations = Dataset(
    id='gc_net_promice_stations',
    assets=[
        HttpAsset(
            id='promice',
            urls=[
                'https://raw.githubusercontent.com/GEUS-PROMICE/map_GC-Net_PROMICE_kml/59455ddb50f7eeb1b8c5a5fdd7f80bfd548a0c92/input_data/PROMICE_info_from_GPS_data_2017-2018.csv',
            ],
        ),
        HttpAsset(
            id='promice_former',
            urls=[
                'https://raw.githubusercontent.com/GEUS-PROMICE/map_GC-Net_PROMICE_kml/59455ddb50f7eeb1b8c5a5fdd7f80bfd548a0c92/input_data/PROMICE_info_from_GPS_data_2017-2018_former_sites.csv',
            ],
        ),
        HttpAsset(
            id='gc_net',
            urls=[
                'https://raw.githubusercontent.com/GEUS-PROMICE/map_GC-Net_PROMICE_kml/59455ddb50f7eeb1b8c5a5fdd7f80bfd548a0c92/input_data/GCN%20info%20ca.2000.csv',
            ],
        ),
    ],
    metadata={
        'title':
        'Map of GC-Net and PROMICE locations',
        'abstract':
        ("""GitHub data description (creator: jasonebox): For PROMICE, I use
            a 2017-2018 average of station GPS data. I added an updated position
예제 #24
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

# TODO: How to create a layer using this data? The NETCDF files are composed of
# daily runoff amounts predicted by a climate model for each basin in the
# streams_outlets_basins dataset.
promice_runoff = Dataset(
    id='promice_runoff',
    assets=[
        HttpAsset(
            id=f'land_mar_{year}',
            urls=[
                f'https://promice.org/PromiceDataPortal/api/download/0f9dc69b-2e3c-43a2-a928-36fbb88d7433/version_01/runoff/coast/runoff_land_MAR_{year}.nc',
            ],
        ) for year in range(2010, 2017 + 1)
    ],
    metadata={
        'title':
        'Map of GC-Net and PROMICE locations',
        'abstract':
        ("""High resolution map of Greenland hydrologic outlets, basins, and
            streams, and a 1979 through 2017 time series of Greenland liquid
            water runoff for each outlet."""),
        'citation': {
            'text': ("""Mankoff et al. - submitted to ESSD."""),
            'url':
            'https://doi.org/10.22008/promice/data/freshwater_runoff/v01',
        },
    },
)
예제 #25
0
                Greenland. Web:
                  https://kort.nunagis.gl/portal/home/item.html?id=b70a43b814e84
                78c9514208548ca5f61.
                Date accessed: {{date_accessed}}."""),
            'url':
            'https://kort.nunagis.gl/portal/home/item.html?id=b70a43b814e8478c9514208548ca5f61',
        },
    },
)

ne_states_provinces = Dataset(
    id='ne_states_provinces',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_1_states_provinces.zip',
            ],
        ),
    ],
    metadata={
        'title':
        'Admin 1 – States, Provinces',
        'abstract':
        ("""Internal, first-order administrative boundaries and polygons for
            all but a few tiny countries. Includes name attributes (including
            diacritical marks), name variants, and some statistical codes (FIPS,
            ISO, HASC)."""),
        'citation': {
            'text': ("""Made with Natural Earth"""),
            'url':
            'https://github.com/nvkelso/natural-earth-vector/blob/master/LICENSE.md',
예제 #26
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

continental_shelf = Dataset(
    id='continental_shelf',
    assets=[
        HttpAsset(
            id='north_points',
            urls=[
                'http://tuvalu.grida.no/ecs/dnk_76_2014_points.zip',
            ],
        ),
        HttpAsset(
            id='north_lines',
            urls=[
                'http://tuvalu.grida.no/ecs/dnk_76_2014_lines.zip',
            ],
        ),
        HttpAsset(
            id='north_polygons',
            urls=[
                'http://tuvalu.grida.no/ecs/dnk_76_2014_polygons.zip',
            ],
        ),
        HttpAsset(
            id='northeast_points',
            urls=[
                'http://tuvalu.grida.no/ecs/dnk_68_2013_points.zip',
            ],
        ),
        HttpAsset(
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset


mineral_and_hydrocarbon_licenses = Dataset(
    id='mineral_and_hydrocarbon_licenses',
    assets=[
        HttpAsset(
            id='mcas_mlsa_public_all',
            urls=[
                'https://gis.govmin.gl/geoserver/MLSA/ows?service=WFS&version=1.0.0&request=GetFeature&outputFormat=shape-zip&typeNames=MLSA:mcas_mlsa_public_all',
            ],
        ),
        HttpAsset(
            id='mcas_mlsa_public_historic',
            urls=[
                'https://gis.govmin.gl/geoserver/MLSA/ows?service=WFS&version=1.0.0&request=GetFeature&outputFormat=shape-zip&typeNames=MLSA:mcas_mlsa_public_historic',
            ],
        ),
    ],
    metadata={
        'title': 'Mineral and hydrocarbon licenses',
        'abstract': (
            """Mineral and hydrocarbon license data, including historic public
            licenses and public licenses. License data is sourced from the
            Mineral Resource Authority, Government of Greenland using their
            GeoServer version 2.14.1 (https://gis.govmin.gl/geoserver/web/)."""
        ),
        'citation': {
            'text': 'Government of Greenland/GINR',
            'url': '',
예제 #28
0
    MAX_CONCENTRATION_YEARS,
    MIN_CONCENTRATION_YEARS,
    concentration_maximum_asset_for_year,
)
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset


seaice_index = Dataset(
    id='seaice_index',
    assets=[
        *[
            HttpAsset(
                id=f'median_extent_line_{month:02d}',
                urls=[(
                    'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/shapefiles/shp_median'
                    f'/median_extent_N_{month:02d}_1981-2010_polyline_v3.0.zip'
                )],
            ) for month in range(1, 12 + 1)
        ],
        *[
            HttpAsset(
                id=f'minimum_concentration_{year}',
                urls=[(
                    'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/geotiff'
                    f'/09_Sep/N_{year}09_concentration_v3.0.tif'
                )],
            ) for year in MIN_CONCENTRATION_YEARS
        ],
        *[
            concentration_maximum_asset_for_year(year) for year in MAX_CONCENTRATION_YEARS
예제 #29
0
파일: caff.py 프로젝트: nsidc/qgreenland
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

caff_murre_colonies = Dataset(
    id='caff_murre_colonies',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://abds.is/index.php/publications/the-distribution-of-thick-billed-and-common-murre-colonies-in-the-north/download',
            ],
        ),
    ],
    metadata={
        'title':
        'The distribution of thick-billed and common murre colonies in the North.',
        'abstract':
        ("""Murres are among the most abundant seabirds in the Northern
            Hemisphere with a population in excess of ten million adults. No
            obvious global trend has been identified but the majority of
            regional populations have shown declines over the past three
            decades. While they are currently abundant, climate change is
            projected to pose problems to murres in the future, especially for
            the more northern species, the thick-billed murre, which is strongly
            associated with sea ice. Other threats include fisheries
            interactions, over-exploitation, contaminants, and oil spills, the
            latter becoming more important if climate change expands shipping
            and hydrocarbon development in the Arctic."""),
        'citation': {
            'text':
            ("""Arctic Biodiversity Trends 2010 – Selected indicators of
예제 #30
0
from qgreenland.models.config.asset import HttpAsset
from qgreenland.models.config.dataset import Dataset

bathymetric_chart = Dataset(
    id='bathymetric_chart',
    assets=[
        HttpAsset(
            id='only',
            urls=[
                'https://www.bodc.ac.uk/data/open_download/ibcao/ibcao_v4_400m_ice/cfnetcdf/',
            ],
        ),
    ],
    metadata={
        'title':
        'Bathymetric Chart of the Arctic Ocean (IBCAO)',
        'abstract':
        ("""The goal of the IBCAO initiative is to develop a digital database
            that contains all available bathymetric data north of 64° North, for
            use by mapmakers, researchers, institutions, and others whose work
            requires a detailed and accurate knowledge of the depth and the
            shape of the Arctic seabed."""),
        'citation': {
            'text': ("""GEBCO Compilation Group (2020) GEBCO 2020 Grid
                (doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9)"""),
            'url':
            'https://www.gebco.net/data_and_products/gridded_bathymetry_data/arctic_ocean/',
        },
    },
)