def test_scale_taxa_data_matrix(self): coord = np.array([[1, 4, 7, 0], [2, 5, 8, 1], [3, 6, 9, 2]], float) taxdata = {} taxdata['prevalence'] = np.array([0, .5, 1]) taxdata['coord'] = coord taxdata['lineages'] = np.array(['Root;A', 'Root;B', 'Root;C']) pct_var = np.array([100, 10, 1], dtype="float") # with scaling res = bp.make_mage_taxa(taxdata, 3, pct_var, scaled=True, scalars=None, radius=1, min_taxon_radius=10, max_taxon_radius=20, taxon_alpha=.7) self.assertEqual(res, taxa_mage_scale) # without scaling res = bp.make_mage_taxa(taxdata, 3, pct_var, scaled=False, scalars=None, radius=1, min_taxon_radius=10, max_taxon_radius=20, taxon_alpha=.7) self.assertEqual(res, taxa_mage_no_scale)
def test_scale_taxa_data_matrix(self): coord = np.array([ [1,4,7,0], [2,5,8,1], [3,6,9,2]],float) taxdata = {} taxdata['prevalence'] = np.array([0,.5,1]) taxdata['coord'] = coord taxdata['lineages'] = np.array(['Root;A','Root;B','Root;C']) pct_var = np.array([100,10,1],dtype="float") # with scaling res = bp.make_mage_taxa(taxdata,3,pct_var,scaled=True,scalars=None,\ radius=1, min_taxon_radius=10, max_taxon_radius=20, taxon_alpha=.7) self.assertEqual(res, taxa_mage_scale) # without scaling res = bp.make_mage_taxa(taxdata,3,pct_var,scaled=False,scalars=None,\ radius=1, min_taxon_radius=10, max_taxon_radius=20, taxon_alpha=.7) self.assertEqual(res, taxa_mage_no_scale)