def update( cls, calibrations: Calibrations, exp_data: ExperimentData, parameter: str, schedule: Union[ScheduleBlock, str], result_index: Optional[int] = -1, group: str = "default", target_angle: float = np.pi, **options, ): """Update the value of a drag parameter measured by the FineDrag experiment. Args: calibrations: The calibrations to update. exp_data: The experiment data from which to update. parameter: The name of the parameter in the calibrations to update. schedule: The ScheduleBlock instance or the name of the instance to which the parameter is attached. result_index: The result index to use. By default search entry by name. group: The calibrations group to update. Defaults to "default." target_angle: The target rotation angle of the pulse. options: Trailing options. Raises: CalibrationError: If we cannot get the pulse's standard deviation from the schedule. """ qubits = exp_data.metadata["physical_qubits"] if isinstance(schedule, str): schedule = calibrations.get_schedule(schedule, qubits) # Obtain sigma as it is needed for the fine DRAG update rule. sigma = None for block in schedule.blocks: if isinstance(block, Play) and hasattr(block.pulse, "sigma"): sigma = getattr(block.pulse, "sigma") if sigma is None: raise CalibrationError(f"Could not infer sigma from {schedule}.") d_theta = BaseUpdater.get_value(exp_data, "d_theta", result_index) # See the documentation in fine_drag.py for the derivation of this rule. d_beta = -np.sqrt(np.pi) * d_theta * sigma / target_angle**2 old_beta = calibrations.get_parameter_value(parameter, qubits, schedule, group=group) new_beta = old_beta + d_beta cls.add_parameter_value(calibrations, exp_data, new_beta, parameter, schedule, group)
class TestAmplitudeUpdate(QiskitTestCase): """Test the update functions in the update library.""" def setUp(self): """Setup amplitude values.""" super().setUp() self.cals = Calibrations() self.qubit = 1 axp = Parameter("amp") chan = Parameter("ch0") with pulse.build(name="xp") as xp: pulse.play(pulse.Gaussian(duration=160, amp=axp, sigma=40), pulse.DriveChannel(chan)) ax90p = Parameter("amp") with pulse.build(name="x90p") as x90p: pulse.play(pulse.Gaussian(duration=160, amp=ax90p, sigma=40), pulse.DriveChannel(chan)) self.x90p = x90p self.cals.add_schedule(xp, num_qubits=1) self.cals.add_schedule(x90p, num_qubits=1) self.cals.add_parameter_value(0.2, "amp", self.qubit, "xp") self.cals.add_parameter_value(0.1, "amp", self.qubit, "x90p") def test_amplitude(self): """Test amplitude update from Rabi.""" rabi = Rabi(self.qubit) rabi.set_experiment_options(amplitudes=np.linspace(-0.95, 0.95, 21)) exp_data = rabi.run(RabiBackend()) exp_data.block_for_results() with self.assertRaises(CalibrationError): self.cals.get_schedule("xp", qubits=0) to_update = [(np.pi, "amp", "xp"), (np.pi / 2, "amp", self.x90p)] self.assertEqual(len(self.cals.parameters_table()), 2) Amplitude.update(self.cals, exp_data, angles_schedules=to_update) with self.assertRaises(CalibrationError): self.cals.get_schedule("xp", qubits=0) self.assertEqual(len(self.cals.parameters_table()["data"]), 4) # Now check the corresponding schedules result = exp_data.analysis_results(1) rate = 2 * np.pi * result.value.value amp = np.round(np.pi / rate, decimals=8) with pulse.build(name="xp") as expected: pulse.play(pulse.Gaussian(160, amp, 40), pulse.DriveChannel(self.qubit)) self.assertEqual(self.cals.get_schedule("xp", qubits=self.qubit), expected) amp = np.round(0.5 * np.pi / rate, decimals=8) with pulse.build(name="xp") as expected: pulse.play(pulse.Gaussian(160, amp, 40), pulse.DriveChannel(self.qubit)) self.assertEqual(self.cals.get_schedule("x90p", qubits=self.qubit), expected)