예제 #1
0
def get_pulse_schedule(backend: IBMQBackend) -> Schedule:
    """Return a pulse schedule."""
    config = backend.configuration()
    defaults = backend.defaults()
    inst_map = defaults.instruction_schedule_map

    # Run 2 experiments - 1 with x pulse and 1 without
    x = inst_map.get('x', 0)
    measure = inst_map.get('measure', range(config.n_qubits)) << x.duration
    ground_sched = measure
    excited_sched = x | measure
    schedules = [ground_sched, excited_sched]
    return schedules
예제 #2
0
def get_large_circuit(backend: IBMQBackend) -> QuantumCircuit:
    """Return a slightly larger circuit that would run a bit longer.

    Args:
        backend: Backend on which the circuit will run.

    Returns:
        A larger circuit.
    """
    n_qubits = min(backend.configuration().n_qubits, 20)
    circuit = QuantumCircuit(n_qubits, n_qubits)
    for n in range(n_qubits-1):
        circuit.h(n)
        circuit.cx(n, n+1)
    circuit.measure(list(range(n_qubits)), list(range(n_qubits)))

    return circuit
예제 #3
0
def iplot_error_map(
        backend: IBMQBackend,
        figsize: Tuple[int] = (800, 500),
        show_title: bool = True,
        remove_badcal_edges: bool = True,
        background_color: str = 'white',
        as_widget: bool = False) -> Union[PlotlyFigure, PlotlyWidget]:
    """Plot the error map of a device.

    Args:
        backend: Plot the error map for this backend.
        figsize: Figure size in pixels.
        show_title: Whether to show figure title.
        remove_badcal_edges: Whether to remove bad CX gate calibration data.
        background_color: Background color, either 'white' or 'black'.
        as_widget: ``True`` if the figure is to be returned as a ``PlotlyWidget``.
            Otherwise the figure is to be returned as a ``PlotlyFigure``.

    Returns:
        The error map figure.

    Raises:
        VisualizationValueError: If an invalid input is received.
        VisualizationTypeError: If the specified `backend` is a simulator.

    Example:
        .. jupyter-execute::
            :hide-code:
            :hide-output:

            from qiskit.test.ibmq_mock import mock_get_backend
            mock_get_backend('FakeVigo')


        .. jupyter-execute::

           from qiskit import IBMQ
           from qiskit_ibm.visualization import iplot_error_map

           IBMQ.load_account()

           provider = IBMQ.get_provider(group='open', project='main')
           backend = provider.get_backend('ibmq_vigo')

           iplot_error_map(backend, as_widget=True)
    """
    meas_text_color = '#000000'
    if background_color == 'white':
        color_map = HELIX_LIGHT_CMAP
        text_color = '#000000'
        plotly_cmap = HELIX_LIGHT
    elif background_color == 'black':
        color_map = HELIX_DARK_CMAP
        text_color = '#FFFFFF'
        plotly_cmap = HELIX_DARK
    else:
        raise VisualizationValueError(
            '"{}" is not a valid background_color selection.'.format(
                background_color))

    if backend.configuration().simulator:
        raise VisualizationTypeError(
            'Requires a device backend, not a simulator.')

    config = backend.configuration()
    n_qubits = config.n_qubits
    cmap = config.coupling_map

    if n_qubits in DEVICE_LAYOUTS.keys():
        grid_data = DEVICE_LAYOUTS[n_qubits]
    else:
        fig = go.Figure()
        fig.update_layout(showlegend=False,
                          plot_bgcolor=background_color,
                          paper_bgcolor=background_color,
                          width=figsize[0],
                          height=figsize[1],
                          margin=dict(t=60, l=0, r=0, b=0))
        out = PlotlyWidget(fig)
        return out

    props = backend.properties().to_dict()

    t1s = []
    t2s = []
    for qubit_props in props['qubits']:
        count = 0
        for item in qubit_props:
            if item['name'] == 'T1':
                t1s.append(item['value'])
                count += 1
            elif item['name'] == 'T2':
                t2s.append(item['value'])
                count += 1
            if count == 2:
                break

    # U2 error rates
    single_gate_errors = [0] * n_qubits
    for gate in props['gates']:
        if gate['gate'] == 'u2':
            _qubit = gate['qubits'][0]
            single_gate_errors[_qubit] = gate['parameters'][0]['value']

    # Convert to percent
    single_gate_errors = 100 * np.asarray(single_gate_errors)
    avg_1q_err = np.mean(single_gate_errors)
    max_1q_err = max(single_gate_errors)

    single_norm = mpl.colors.Normalize(vmin=min(single_gate_errors),
                                       vmax=max_1q_err)

    q_colors = [
        mpl.colors.rgb2hex(color_map(single_norm(err)))
        for err in single_gate_errors
    ]

    line_colors = []
    cx_idx = []
    if n_qubits > 1 and cmap:
        cx_errors = []
        for cmap_qubits in cmap:
            for gate in props['gates']:
                if gate['qubits'] == cmap_qubits:
                    cx_errors.append(gate['parameters'][0]['value'])
                    break
            else:
                continue

        # Convert to percent
        cx_errors = 100 * np.asarray(cx_errors)

        # remove bad cx edges
        if remove_badcal_edges:
            cx_idx = np.where(cx_errors != 100.0)[0]
        else:
            cx_idx = np.arange(len(cx_errors))

        avg_cx_err = np.mean(cx_errors[cx_idx])

        for err in cx_errors:
            if err != 100.0 or not remove_badcal_edges:
                cx_norm = mpl.colors.Normalize(vmin=min(cx_errors[cx_idx]),
                                               vmax=max(cx_errors[cx_idx]))
                line_colors.append(mpl.colors.rgb2hex(color_map(cx_norm(err))))
            else:
                line_colors.append("#ff0000")

    # Measurement errors
    read_err = []

    for qubit in range(n_qubits):
        for item in props['qubits'][qubit]:
            if item['name'] == 'readout_error':
                read_err.append(item['value'])

    read_err = 100 * np.asarray(read_err)
    avg_read_err = np.mean(read_err)
    max_read_err = np.max(read_err)

    if n_qubits < 10:
        num_left = n_qubits
        num_right = 0
    else:
        num_left = math.ceil(n_qubits / 2)
        num_right = n_qubits - num_left

    x_max = max([d[1] for d in grid_data])
    y_max = max([d[0] for d in grid_data])
    max_dim = max(x_max, y_max)

    qubit_size = 32
    font_size = 14
    offset = 0
    if cmap:
        if y_max / max_dim < 0.33:
            qubit_size = 24
            font_size = 10
            offset = 1

    if n_qubits > 5:
        right_meas_title = "Readout Error (%)"
    else:
        right_meas_title = None

    if cmap and cx_idx.size > 0:
        cx_title = "CNOT Error Rate [Avg. {}%]".format(np.round(avg_cx_err, 3))
    else:
        cx_title = None
    fig = make_subplots(
        rows=2,
        cols=11,
        row_heights=[0.95, 0.05],
        vertical_spacing=0.15,
        specs=[[{
            "colspan": 2
        }, None, {
            "colspan": 6
        }, None, None, None, None, None, {
            "colspan": 2
        }, None, None],
               [{
                   "colspan": 4
               }, None, None, None, None, None, {
                   "colspan": 4
               }, None, None, None, None]],
        subplot_titles=("Readout Error (%)", None, right_meas_title,
                        "Hadamard Error Rate [Avg. {}%]".format(
                            np.round(avg_1q_err, 3)), cx_title))

    # Add lines for couplings
    if cmap and n_qubits > 1 and cx_idx.size > 0:
        for ind, edge in enumerate(cmap):
            is_symmetric = False
            if edge[::-1] in cmap:
                is_symmetric = True
            y_start = grid_data[edge[0]][0] + offset
            x_start = grid_data[edge[0]][1]
            y_end = grid_data[edge[1]][0] + offset
            x_end = grid_data[edge[1]][1]

            if is_symmetric:
                if y_start == y_end:
                    x_end = (x_end - x_start) / 2 + x_start
                    x_mid = x_end
                    y_mid = y_start

                elif x_start == x_end:
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_start
                    y_mid = y_end

                else:
                    x_end = (x_end - x_start) / 2 + x_start
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_end
                    y_mid = y_end
            else:
                if y_start == y_end:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = y_end

                elif x_start == x_end:
                    x_mid = x_end
                    y_mid = (y_end - y_start) / 2 + y_start

                else:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = (y_end - y_start) / 2 + y_start

            fig.append_trace(go.Scatter(
                x=[x_start, x_mid, x_end],
                y=[-y_start, -y_mid, -y_end],
                mode="lines",
                line=dict(width=6, color=line_colors[ind]),
                hoverinfo='text',
                hovertext='CX<sub>err</sub>{B}_{A} = {err} %'.format(
                    A=edge[0], B=edge[1], err=np.round(cx_errors[ind], 3))),
                             row=1,
                             col=3)

    # Add the qubits themselves
    qubit_text = []
    qubit_str = "<b>Qubit {}</b><br>H<sub>err</sub> = {} %"
    qubit_str += "<br>T1 = {} \u03BCs<br>T2 = {} \u03BCs"
    for kk in range(n_qubits):
        qubit_text.append(
            qubit_str.format(kk, np.round(single_gate_errors[kk], 3),
                             np.round(t1s[kk], 2), np.round(t2s[kk], 2)))

    if n_qubits > 20:
        qubit_size = 23
        font_size = 11

    if n_qubits > 50:
        qubit_size = 20
        font_size = 9

    qtext_color = []
    for ii in range(n_qubits):
        if background_color == 'black':
            if single_gate_errors[ii] > 0.8 * max_1q_err:
                qtext_color.append('black')
            else:
                qtext_color.append('white')
        else:
            qtext_color.append('white')

    fig.append_trace(go.Scatter(x=[d[1] for d in grid_data],
                                y=[-d[0] - offset for d in grid_data],
                                mode="markers+text",
                                marker=go.scatter.Marker(size=qubit_size,
                                                         color=q_colors,
                                                         opacity=1),
                                text=[str(ii) for ii in range(n_qubits)],
                                textposition="middle center",
                                textfont=dict(size=font_size,
                                              color=qtext_color),
                                hoverinfo="text",
                                hovertext=qubit_text),
                     row=1,
                     col=3)

    fig.update_xaxes(row=1, col=3, visible=False)
    _range = None
    if offset:
        _range = [-3.5, 0.5]
    fig.update_yaxes(row=1, col=3, visible=False, range=_range)

    # H error rate colorbar
    min_1q_err = min(single_gate_errors)
    max_1q_err = max(single_gate_errors)
    if n_qubits > 1:
        fig.append_trace(go.Heatmap(z=[
            np.linspace(min_1q_err, max_1q_err, 100),
            np.linspace(min_1q_err, max_1q_err, 100)
        ],
                                    colorscale=plotly_cmap,
                                    showscale=False,
                                    hoverinfo='none'),
                         row=2,
                         col=1)

        fig.update_yaxes(row=2, col=1, visible=False)

        fig.update_xaxes(row=2,
                         col=1,
                         tickvals=[0, 49, 99],
                         ticktext=[
                             np.round(min_1q_err, 3),
                             np.round(
                                 (max_1q_err - min_1q_err) / 2 + min_1q_err,
                                 3),
                             np.round(max_1q_err, 3)
                         ])

    # CX error rate colorbar
    if cmap and n_qubits > 1 and cx_idx.size > 0:
        min_cx_err = min(cx_errors)
        max_cx_err = max(cx_errors)
        if min_cx_err == max_cx_err:
            min_cx_err = 0  # Force more than 1 color.

        fig.append_trace(go.Heatmap(z=[
            np.linspace(min_cx_err, max_cx_err, 100),
            np.linspace(min_cx_err, max_cx_err, 100)
        ],
                                    colorscale=plotly_cmap,
                                    showscale=False,
                                    hoverinfo='none'),
                         row=2,
                         col=7)

        fig.update_yaxes(row=2, col=7, visible=False)

        min_cx_idx_err = min(cx_errors[cx_idx])
        max_cx_idx_err = max(cx_errors[cx_idx])
        fig.update_xaxes(row=2,
                         col=7,
                         tickvals=[0, 49, 99],
                         ticktext=[
                             np.round(min_cx_idx_err, 3),
                             np.round((max_cx_idx_err - min_cx_idx_err) / 2 +
                                      min_cx_idx_err, 3),
                             np.round(max_cx_idx_err, 3)
                         ])

    hover_text = "<b>Qubit {}</b><br>M<sub>err</sub> = {} %"
    # Add the left side meas errors
    for kk in range(num_left - 1, -1, -1):
        fig.append_trace(go.Bar(
            x=[read_err[kk]],
            y=[kk],
            orientation='h',
            marker=dict(color='#eedccb'),
            hoverinfo="text",
            hoverlabel=dict(font=dict(color=meas_text_color)),
            hovertext=[hover_text.format(kk, np.round(read_err[kk], 3))]),
                         row=1,
                         col=1)

    fig.append_trace(go.Scatter(x=[avg_read_err, avg_read_err],
                                y=[-0.25, num_left - 1 + 0.25],
                                mode='lines',
                                hoverinfo='none',
                                line=dict(color=text_color,
                                          width=2,
                                          dash='dot')),
                     row=1,
                     col=1)

    fig.update_yaxes(row=1,
                     col=1,
                     tickvals=list(range(num_left)),
                     autorange="reversed")

    fig.update_xaxes(
        row=1,
        col=1,
        range=[0, 1.1 * max_read_err],
        tickvals=[0, np.round(avg_read_err, 2),
                  np.round(max_read_err, 2)],
        showline=True,
        linewidth=1,
        linecolor=text_color,
        tickcolor=text_color,
        ticks="outside",
        showgrid=False,
        zeroline=False)

    # Add the right side meas errors, if any
    if num_right:
        for kk in range(n_qubits - 1, num_left - 1, -1):
            fig.append_trace(go.Bar(
                x=[-read_err[kk]],
                y=[kk],
                orientation='h',
                marker=dict(color='#eedccb'),
                hoverinfo="text",
                hoverlabel=dict(font=dict(color=meas_text_color)),
                hovertext=[hover_text.format(kk, np.round(read_err[kk], 3))]),
                             row=1,
                             col=9)

        fig.append_trace(go.Scatter(x=[-avg_read_err, -avg_read_err],
                                    y=[num_left - 0.25, n_qubits - 1 + 0.25],
                                    mode='lines',
                                    hoverinfo='none',
                                    line=dict(color=text_color,
                                              width=2,
                                              dash='dot')),
                         row=1,
                         col=9)

        fig.update_yaxes(
            row=1,
            col=9,
            tickvals=list(range(n_qubits - 1, num_left - 1, -1)),
            side='right',
            autorange="reversed",
        )

        fig.update_xaxes(
            row=1,
            col=9,
            range=[-1.1 * max_read_err, 0],
            tickvals=[
                0, -np.round(avg_read_err, 2), -np.round(max_read_err, 2)
            ],
            ticktext=[0,
                      np.round(avg_read_err, 2),
                      np.round(max_read_err, 2)],
            showline=True,
            linewidth=1,
            linecolor=text_color,
            tickcolor=text_color,
            ticks="outside",
            showgrid=False,
            zeroline=False)

    # Makes the subplot titles smaller than the 16pt default
    for ann in fig['layout']['annotations']:
        ann['font'] = dict(size=13)

    title_text = "{} Error Map".format(backend.name()) if show_title else ''
    fig.update_layout(showlegend=False,
                      plot_bgcolor=background_color,
                      paper_bgcolor=background_color,
                      width=figsize[0],
                      height=figsize[1],
                      title=dict(text=title_text, x=0.452),
                      title_font_size=20,
                      font=dict(color=text_color),
                      margin=dict(t=60, l=0, r=40, b=0))
    if as_widget:
        return PlotlyWidget(fig)
    return PlotlyFigure(fig)
예제 #4
0
def iplot_gate_map(
        backend: IBMQBackend,
        figsize: Tuple[Optional[int], Optional[int]] = (None, None),
        label_qubits: bool = True,
        qubit_size: Optional[float] = None,
        line_width: Optional[float] = None,
        font_size: Optional[int] = None,
        qubit_color: Union[List[str], str] = "#2f4b7c",
        qubit_labels: Optional[List[str]] = None,
        line_color: Union[List[str], str] = "#2f4b7c",
        font_color: str = "white",
        background_color: str = 'white',
        as_widget: bool = False
) -> Union[PlotlyFigure, PlotlyWidget]:
    """Plots an interactive gate map of a device.

    Args:
        backend: Plot the gate map for this backend.
        figsize: Output figure size (wxh) in inches.
        label_qubits: Labels for the qubits.
        qubit_size: Size of qubit marker.
        line_width: Width of lines.
        font_size: Font size of qubit labels.
        qubit_color: A list of colors for the qubits. If a single color is given,
            it's used for all qubits.
        qubit_labels: A list of qubit labels
        line_color: A list of colors for each line from the coupling map. If a
            single color is given, it's used for all lines.
        font_color: The font color for the qubit labels.
        background_color: The background color, either 'white' or 'black'.
        as_widget: ``True`` if the figure is to be returned as a ``PlotlyWidget``.
            Otherwise the figure is to be returned as a ``PlotlyFigure``.

    Returns:
        The gate map figure.

    Example:

        .. jupyter-execute::
            :hide-code:
            :hide-output:

            from qiskit.test.ibmq_mock import mock_get_backend
            mock_get_backend('FakeVigo')


        .. jupyter-execute::

           from qiskit import IBMQ
           from qiskit_ibm.visualization import iplot_gate_map

           IBMQ.load_account()

           provider = IBMQ.get_provider(group='open', project='main')
           backend = provider.get_backend('ibmq_vigo')

           iplot_gate_map(backend, as_widget=True)
    """

    config = backend.configuration()
    n_qubits = config.n_qubits
    cmap = config.coupling_map

    # set coloring
    if isinstance(qubit_color, str):
        qubit_color = [qubit_color] * n_qubits
    if isinstance(line_color, str):
        line_color = [line_color] * len(cmap) if cmap else []

    if n_qubits in DEVICE_LAYOUTS.keys():
        grid_data = DEVICE_LAYOUTS[n_qubits]
    else:
        fig = go.Figure()
        fig.update_layout(showlegend=False,
                          plot_bgcolor=background_color,
                          paper_bgcolor=background_color,
                          width=figsize[0], height=figsize[1],
                          margin=dict(t=30, l=0, r=0, b=0))

        if as_widget:
            return PlotlyWidget(fig)
        return PlotlyFigure(fig)

    offset = 0
    if cmap:
        if n_qubits in [14, 15, 16]:
            offset = 1
            if qubit_size is None:
                qubit_size = 24
            if font_size is None:
                font_size = 10
            if line_width is None:
                line_width = 4
            if figsize == (None, None):
                figsize = (400, 200)
        elif n_qubits == 27:
            if qubit_size is None:
                qubit_size = 24
            if font_size is None:
                font_size = 10
            if line_width is None:
                line_width = 4
            if figsize == (None, None):
                figsize = (400, 300)
        else:
            if qubit_size is None:
                qubit_size = 32
            if font_size is None:
                font_size = 14
            if line_width is None:
                line_width = 6
            if figsize == (None, None):
                figsize = (300, 300)
    else:
        if figsize == (None, None):
            figsize = (300, 300)
        if qubit_size is None:
            qubit_size = 30

    fig = go.Figure()

    # Add lines for couplings
    if cmap:
        for ind, edge in enumerate(cmap):
            is_symmetric = False
            if edge[::-1] in cmap:
                is_symmetric = True
            y_start = grid_data[edge[0]][0] + offset
            x_start = grid_data[edge[0]][1]
            y_end = grid_data[edge[1]][0] + offset
            x_end = grid_data[edge[1]][1]

            if is_symmetric:
                if y_start == y_end:
                    x_end = (x_end - x_start) / 2 + x_start
                    x_mid = x_end
                    y_mid = y_start

                elif x_start == x_end:
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_start
                    y_mid = y_end

                else:
                    x_end = (x_end - x_start) / 2 + x_start
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_end
                    y_mid = y_end
            else:
                if y_start == y_end:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = y_end

                elif x_start == x_end:
                    x_mid = x_end
                    y_mid = (y_end - y_start) / 2 + y_start

                else:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = (y_end - y_start) / 2 + y_start

            fig.add_trace(
                go.Scatter(x=[x_start, x_mid, x_end],
                           y=[-y_start, -y_mid, -y_end],
                           mode="lines",
                           hoverinfo='none',
                           line=dict(width=line_width,
                                     color=line_color[ind])))

    # Add the qubits themselves
    if qubit_labels is None:
        qubit_text = []
        qubit_str = "<b>Qubit {}"
        for num in range(n_qubits):
            qubit_text.append(qubit_str.format(num))

    if n_qubits > 50:
        if qubit_size is None:
            qubit_size = 20
        if font_size is None:
            font_size = 9

    fig.add_trace(go.Scatter(
        x=[d[1] for d in grid_data],
        y=[-d[0]-offset for d in grid_data],
        mode="markers+text",
        marker=go.scatter.Marker(size=qubit_size,
                                 color=qubit_color,
                                 opacity=1),
        text=[str(ii) for ii in range(n_qubits)] if label_qubits else None,
        textposition="middle center",
        textfont=dict(size=font_size, color=font_color),
        hoverinfo="text" if label_qubits else 'none',
        hovertext=qubit_text))

    fig.update_xaxes(visible=False)
    _range = None
    if offset:
        _range = [-3.5, 0.5]
    fig.update_yaxes(visible=False, range=_range)

    fig.update_layout(showlegend=False,
                      plot_bgcolor=background_color,
                      paper_bgcolor=background_color,
                      width=figsize[0], height=figsize[1],
                      margin=dict(t=30, l=0, r=0, b=0))

    if as_widget:
        return PlotlyWidget(fig)
    return PlotlyFigure(fig)