def test_converter_list(self):
        """Test converters list"""
        # Input.
        model = Model()
        x_0 = model.binary_var(name='x0')
        x_1 = model.binary_var(name='x1')
        model.maximize(-x_0+2*x_1)
        op = QuadraticProgram()
        op.from_docplex(model)

        # Get the optimum key and value.
        n_iter = 8
        # a single converter.
        qp2qubo = QuadraticProgramToQubo()
        gmf = GroverOptimizer(4, num_iterations=n_iter, quantum_instance=self.sv_simulator,
                              converters=qp2qubo)
        results = gmf.solve(op)
        self.validate_results(op, results)
        # a list of converters
        ineq2eq = InequalityToEquality()
        int2bin = IntegerToBinary()
        penalize = LinearEqualityToPenalty()
        converters = [ineq2eq, int2bin, penalize]
        gmf = GroverOptimizer(4, num_iterations=n_iter, quantum_instance=self.sv_simulator,
                              converters=converters)
        results = gmf.solve(op)
        self.validate_results(op, results)
        # invalid converters
        with self.assertRaises(TypeError):
            invalid = [qp2qubo, "invalid converter"]
            GroverOptimizer(4, num_iterations=n_iter,
                            quantum_instance=self.sv_simulator,
                            converters=invalid)
    def test_converter_list(self):
        """Test converter list"""
        op = QuadraticProgram()
        op.integer_var(0, 3, "x")
        op.binary_var('y')

        op.maximize(linear={'x': 1, 'y': 2})
        op.linear_constraint(linear={'x': 1, 'y': 1}, sense='LE', rhs=3, name='xy_leq')
        min_eigen_solver = NumPyMinimumEigensolver()
        # a single converter
        qp2qubo = QuadraticProgramToQubo()
        min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver, converters=qp2qubo)
        result = min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        # a list of converters
        ineq2eq = InequalityToEquality()
        int2bin = IntegerToBinary()
        penalize = LinearEqualityToPenalty()
        converters = [ineq2eq, int2bin, penalize]
        min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver, converters=converters)
        result = min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        with self.assertRaises(TypeError):
            invalid = [qp2qubo, "invalid converter"]
            MinimumEigenOptimizer(min_eigen_solver,
                                  converters=invalid)
예제 #3
0
 def test_empty_problem(self):
     """ Test empty problem """
     op = QuadraticProgram()
     conv = InequalityToEquality()
     op = conv.convert(op)
     conv = IntegerToBinary()
     op = conv.convert(op)
     conv = LinearEqualityToPenalty()
     op = conv.convert(op)
     _, shift = op.to_ising()
     self.assertEqual(shift, 0.0)
예제 #4
0
 def test_0var_range_inequality(self):
     """ Test InequalityToEquality converter when the var_rang of the slack variable is 0"""
     op = QuadraticProgram()
     op.binary_var('x')
     op.binary_var('y')
     op.linear_constraint(linear={'x': 1, 'y': 1}, sense='LE', rhs=0, name='xy_leq1')
     op.linear_constraint(linear={'x': 1, 'y': 1}, sense='GE', rhs=2, name='xy_geq1')
     op.quadratic_constraint(quadratic={('x', 'x'): 1}, sense='LE', rhs=0, name='xy_leq2')
     op.quadratic_constraint(quadratic={('x', 'y'): 1}, sense='GE', rhs=1, name='xy_geq2')
     ineq2eq = InequalityToEquality()
     new_op = ineq2eq.convert(op)
     self.assertEqual(new_op.get_num_vars(), 2)
     self.assertTrue(all(l_const.sense == Constraint.Sense.EQ
                         for l_const in new_op.linear_constraints))
     self.assertTrue(all(q_const.sense == Constraint.Sense.EQ
                         for q_const in new_op.quadratic_constraints))
예제 #5
0
 def test_inequality_mode_auto(self):
     """ Test auto mode of InequalityToEqualityConverter() """
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name='x{}'.format(i))
     # Linear constraints
     linear_constraint = {'x0': 1, 'x1': 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1')
     linear_constraint = {'x1': 1, 'x2': -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2')
     linear_constraint = {'x0': 1.1, 'x2': 2.2}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 3.3, 'x0x2')
     conv = InequalityToEquality(mode='auto')
     op2 = conv.convert(op)
     lst = [op2.variables[3].vartype, op2.variables[4].vartype]
     self.assertListEqual(lst, [Variable.Type.INTEGER, Variable.Type.CONTINUOUS])
예제 #6
0
 def test_inequality_mode_continuous(self):
     """Test continuous mode of InequalityToEqualityConverter()"""
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name="x{}".format(i))
     # Linear constraints
     linear_constraint = {"x0": 1, "x1": 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1")
     linear_constraint = {"x1": 1, "x2": -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2")
     linear_constraint = {"x0": 1, "x2": 3}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2")
     conv = InequalityToEquality(mode="continuous")
     op2 = conv.convert(op)
     lst = [op2.variables[3].vartype, op2.variables[4].vartype]
     self.assertListEqual(
         lst, [Variable.Type.CONTINUOUS, Variable.Type.CONTINUOUS])
예제 #7
0
 def test_inequality_mode_integer(self):
     """Test integer mode of InequalityToEqualityConverter()"""
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name=f"x{i}")
     # Linear constraints
     linear_constraint = {"x0": 1, "x1": 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1")
     linear_constraint = {"x1": 1, "x2": -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2")
     linear_constraint = {"x0": 1, "x2": 3}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2")
     conv = InequalityToEquality(mode="integer")
     op2 = conv.convert(op)
     lst = [op2.variables[3].vartype, op2.variables[4].vartype]
     self.assertListEqual(lst,
                          [Variable.Type.INTEGER, Variable.Type.INTEGER])
    def test_converter_list(self):
        """Test converter list"""
        op = QuadraticProgram()
        op.integer_var(0, 3, "x")
        op.binary_var("y")

        op.maximize(linear={"x": 1, "y": 2})
        op.linear_constraint(linear={
            "y": 1,
            "x": 1
        },
                             sense="LE",
                             rhs=3,
                             name="xy_leq")

        # construct minimum eigen optimizer
        min_eigen_solver = NumPyMinimumEigensolver()
        min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver)
        # a single converter
        qp2qubo = QuadraticProgramToQubo()
        recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer(
            min_eigen_optimizer, min_num_vars=2, converters=qp2qubo)
        result = recursive_min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        # a list of converters
        ineq2eq = InequalityToEquality()
        int2bin = IntegerToBinary()
        penalize = LinearEqualityToPenalty()
        converters = [ineq2eq, int2bin, penalize]
        recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer(
            min_eigen_optimizer, min_num_vars=2, converters=converters)
        result = recursive_min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        # invalid converters
        with self.assertRaises(TypeError):
            invalid = [qp2qubo, "invalid converter"]
            RecursiveMinimumEigenOptimizer(min_eigen_optimizer,
                                           min_num_vars=2,
                                           converters=invalid)
예제 #9
0
 def test_0var_range_inequality(self):
     """Test InequalityToEquality converter when the var_rang of the slack variable is 0"""
     op = QuadraticProgram()
     op.binary_var("x")
     op.binary_var("y")
     op.linear_constraint(linear={
         "x": 1,
         "y": 1
     },
                          sense="LE",
                          rhs=0,
                          name="xy_leq1")
     op.linear_constraint(linear={
         "x": 1,
         "y": 1
     },
                          sense="GE",
                          rhs=2,
                          name="xy_geq1")
     op.quadratic_constraint(quadratic={("x", "x"): 1},
                             sense="LE",
                             rhs=0,
                             name="xy_leq2")
     op.quadratic_constraint(quadratic={("x", "y"): 1},
                             sense="GE",
                             rhs=1,
                             name="xy_geq2")
     ineq2eq = InequalityToEquality()
     new_op = ineq2eq.convert(op)
     self.assertEqual(new_op.get_num_vars(), 2)
     self.assertTrue(
         all(l_const.sense == Constraint.Sense.EQ
             for l_const in new_op.linear_constraints))
     self.assertTrue(
         all(q_const.sense == Constraint.Sense.EQ
             for q_const in new_op.quadratic_constraints))
예제 #10
0
    def test_inequality_binary(self):
        """Test InequalityToEqualityConverter with binary variables"""
        op = QuadraticProgram()
        for i in range(3):
            op.binary_var(name="x{}".format(i))
        # Linear constraints
        linear_constraint = {"x0": 1, "x1": 1}
        op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1")
        linear_constraint = {"x1": 1, "x2": -1}
        op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2")
        linear_constraint = {"x0": 1, "x2": 3}
        op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2")
        # Quadratic constraints
        quadratic = {("x0", "x1"): 1, ("x1", "x2"): 2}
        op.quadratic_constraint({}, quadratic, Constraint.Sense.LE, 3,
                                "x0x1_x1x2LE")
        quadratic = {("x0", "x1"): 3, ("x1", "x2"): 4}
        op.quadratic_constraint({}, quadratic, Constraint.Sense.GE, 3,
                                "x0x1_x1x2GE")
        # Convert inequality constraints into equality constraints
        conv = InequalityToEquality()
        op2 = conv.convert(op)
        self.assertListEqual(
            [v.name for v in op2.variables],
            [
                "x0",
                "x1",
                "x2",
                "x1x2@int_slack",
                "x0x2@int_slack",
                "x0x1_x1x2LE@int_slack",
                "x0x1_x1x2GE@int_slack",
            ],
        )
        # Check names and objective senses
        self.assertEqual(op.name, op2.name)
        self.assertEqual(op.objective.sense, op2.objective.sense)
        # For linear constraints
        lst = [
            op2.linear_constraints[0].linear.to_dict()[0],
            op2.linear_constraints[0].linear.to_dict()[1],
        ]
        self.assertListEqual(lst, [1, 1])
        self.assertEqual(op2.linear_constraints[0].sense, Constraint.Sense.EQ)
        lst = [
            op2.linear_constraints[1].linear.to_dict()[1],
            op2.linear_constraints[1].linear.to_dict()[2],
            op2.linear_constraints[1].linear.to_dict()[3],
        ]
        self.assertListEqual(lst, [1, -1, 1])
        lst = [op2.variables[3].lowerbound, op2.variables[3].upperbound]
        self.assertListEqual(lst, [0, 3])
        self.assertEqual(op2.linear_constraints[1].sense, Constraint.Sense.EQ)
        lst = [
            op2.linear_constraints[2].linear.to_dict()[0],
            op2.linear_constraints[2].linear.to_dict()[2],
            op2.linear_constraints[2].linear.to_dict()[4],
        ]
        self.assertListEqual(lst, [1, 3, -1])
        lst = [op2.variables[4].lowerbound, op2.variables[4].upperbound]
        self.assertListEqual(lst, [0, 2])
        self.assertEqual(op2.linear_constraints[2].sense, Constraint.Sense.EQ)
        # For quadratic constraints
        lst = [
            op2.quadratic_constraints[0].quadratic.to_dict()[(0, 1)],
            op2.quadratic_constraints[0].quadratic.to_dict()[(1, 2)],
            op2.quadratic_constraints[0].linear.to_dict()[5],
        ]
        self.assertListEqual(lst, [1, 2, 1])
        lst = [op2.variables[5].lowerbound, op2.variables[5].upperbound]
        self.assertListEqual(lst, [0, 3])
        lst = [
            op2.quadratic_constraints[1].quadratic.to_dict()[(0, 1)],
            op2.quadratic_constraints[1].quadratic.to_dict()[(1, 2)],
            op2.quadratic_constraints[1].linear.to_dict()[6],
        ]
        self.assertListEqual(lst, [3, 4, -1])
        lst = [op2.variables[6].lowerbound, op2.variables[6].upperbound]
        self.assertListEqual(lst, [0, 4])

        new_x = conv.interpret(np.arange(7))
        np.testing.assert_array_almost_equal(new_x, np.arange(3))
예제 #11
0
    def test_inequality_integer(self):
        """ Test InequalityToEqualityConverter with integer variables """
        op = QuadraticProgram()
        for i in range(3):
            op.integer_var(name='x{}'.format(i), lowerbound=-3, upperbound=3)
        # Linear constraints
        linear_constraint = {'x0': 1, 'x1': 1}
        op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1')
        linear_constraint = {'x1': 1, 'x2': -1}
        op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2')
        linear_constraint = {'x0': 1, 'x2': 3}
        op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, 'x0x2')
        # Quadratic constraints
        quadratic = {('x0', 'x1'): 1, ('x1', 'x2'): 2}
        op.quadratic_constraint({}, quadratic, Constraint.Sense.LE, 3, 'x0x1_x1x2LE')
        quadratic = {('x0', 'x1'): 3, ('x1', 'x2'): 4}
        op.quadratic_constraint({}, quadratic, Constraint.Sense.GE, 3, 'x0x1_x1x2GE')
        conv = InequalityToEquality()
        op2 = conv.convert(op)
        self.assertListEqual([v.name for v in op2.variables],
                             ['x0', 'x1', 'x2', 'x1x2@int_slack', 'x0x2@int_slack',
                              'x0x1_x1x2LE@int_slack', 'x0x1_x1x2GE@int_slack'])
        # For linear constraints
        lst = [
            op2.linear_constraints[0].linear.to_dict()[0],
            op2.linear_constraints[0].linear.to_dict()[1],
        ]
        self.assertListEqual(lst, [1, 1])
        self.assertEqual(op2.linear_constraints[0].sense, Constraint.Sense.EQ)
        lst = [
            op2.linear_constraints[1].linear.to_dict()[1],
            op2.linear_constraints[1].linear.to_dict()[2],
            op2.linear_constraints[1].linear.to_dict()[3],
        ]
        self.assertListEqual(lst, [1, -1, 1])
        lst = [op2.variables[3].lowerbound, op2.variables[3].upperbound]
        self.assertListEqual(lst, [0, 8])
        self.assertEqual(op2.linear_constraints[1].sense, Constraint.Sense.EQ)
        lst = [
            op2.linear_constraints[2].linear.to_dict()[0],
            op2.linear_constraints[2].linear.to_dict()[2],
            op2.linear_constraints[2].linear.to_dict()[4],
        ]
        self.assertListEqual(lst, [1, 3, -1])
        lst = [op2.variables[4].lowerbound, op2.variables[4].upperbound]
        self.assertListEqual(lst, [0, 10])
        self.assertEqual(op2.linear_constraints[2].sense, Constraint.Sense.EQ)
        # For quadratic constraints
        lst = [
            op2.quadratic_constraints[0].quadratic.to_dict()[(0, 1)],
            op2.quadratic_constraints[0].quadratic.to_dict()[(1, 2)],
            op2.quadratic_constraints[0].linear.to_dict()[5],
        ]
        self.assertListEqual(lst, [1, 2, 1])
        lst = [op2.variables[5].lowerbound, op2.variables[5].upperbound]
        self.assertListEqual(lst, [0, 30])
        lst = [
            op2.quadratic_constraints[1].quadratic.to_dict()[(0, 1)],
            op2.quadratic_constraints[1].quadratic.to_dict()[(1, 2)],
            op2.quadratic_constraints[1].linear.to_dict()[6],
        ]
        self.assertListEqual(lst, [3, 4, -1])
        lst = [op2.variables[6].lowerbound, op2.variables[6].upperbound]
        self.assertListEqual(lst, [0, 60])

        new_x = conv.interpret(np.arange(7))
        np.testing.assert_array_almost_equal(new_x, np.arange(3))