예제 #1
0
def train():
    """train model

    Returns
    -------
        pred_score: pandas.DataFrame
            predict scores
        performance: dict
            model performance
    """
    # get data
    x_train, y_train, x_validate, y_validate, x_test, y_test = QLibDataHandlerClose(
        **DATA_HANDLER_CONFIG).get_split_data(**TRAINER_CONFIG)

    # train
    model = LGBModel(**MODEL_CONFIG)
    model.fit(x_train, y_train, x_validate, y_validate)
    _pred = model.predict(x_test)
    _pred = pd.DataFrame(_pred, index=x_test.index, columns=y_test.columns)
    pred_score = pd.DataFrame(index=_pred.index)
    pred_score["score"] = _pred.iloc(axis=1)[0]

    # get performance
    model_score = model.score(x_test, y_test)
    # Remove rows from x, y and w, which contain Nan in any columns in y_test.
    x_test, y_test, __ = drop_nan_by_y_index(x_test, y_test)
    pred_test = model.predict(x_test)
    model_pearsonr = pearsonr(np.ravel(pred_test), np.ravel(y_test.values))[0]

    return pred_score, {
        "model_score": model_score,
        "model_pearsonr": model_pearsonr
    }
예제 #2
0
    ).get_split_data(**TRAINER_CONFIG)

    MODEL_CONFIG = {
        "loss": "mse",
        "colsample_bytree": 0.8879,
        "learning_rate": 0.0421,
        "subsample": 0.8789,
        "lambda_l1": 205.6999,
        "lambda_l2": 580.9768,
        "max_depth": 8,
        "num_leaves": 210,
        "num_threads": 20,
    }
    # use default model
    # custom Model, refer to: TODO: Model API url
    model = LGBModel(**MODEL_CONFIG)
    model.fit(x_train, y_train, x_validate, y_validate)
    _pred = model.predict(x_test)
    _pred = pd.DataFrame(_pred, index=x_test.index, columns=y_test.columns)

    # backtest requires pred_score
    pred_score = pd.DataFrame(index=_pred.index)
    pred_score["score"] = _pred.iloc(axis=1)[0]

    # save pred_score to file
    pred_score_path = Path("~/tmp/qlib/pred_score.pkl").expanduser()
    pred_score_path.parent.mkdir(exist_ok=True, parents=True)
    pred_score.to_pickle(pred_score_path)

    ###################################
    # backtest