class TestLiHBackFlowPySCF(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        orbital_dependent_backflow=True,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)
        print(torch.stack([eauto, ejac], axis=1).squeeze())
        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

    def test2_wf_opt_grad_auto(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)

    def test3_wf_opt_grad_manual(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
예제 #2
0
class TestCompareLiHBackFlowPySCF(unittest.TestCase):
    def setUp(self):

        set_torch_double_precision()
        reset_generator()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # molecule
        self.mol_ref = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                                unit='bohr',
                                calculator='pyscf',
                                basis='sto-3g')

        # backflow wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        include_all_mo=True)
        self.wf.ao.backflow_trans.backflow_kernel.weight.data *= 0.
        self.wf.ao.backflow_trans.backflow_kernel.weight.requires_grad = False

        # normal wave function
        self.wf_ref = SlaterJastrow(self.mol_ref,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        # fc weights
        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight.clone()
        self.wf_ref.fc.weight.data = self.random_fc_weight.clone()

        # jastrow weights
        self.random_jastrow_weight = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        self.wf.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )
        self.wf_ref.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )

        reset_generator()
        # sampler
        self.sampler = Metropolis(nwalkers=5,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        reset_generator()
        self.sampler_ref = Metropolis(nwalkers=5,
                                      nstep=200,
                                      step_size=0.05,
                                      ndim=self.wf.ndim,
                                      nelec=self.wf.nelec,
                                      init=self.mol.domain('normal'),
                                      move={
                                          'type': 'all-elec',
                                          'proba': 'normal'
                                      })

        # optimizer
        reset_generator()
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        reset_generator()
        self.opt_ref = optim.Adam(self.wf_ref.parameters(), lr=0.01)

        # solver
        self.solver_ref = SolverSlaterJastrow(wf=self.wf_ref,
                                              sampler=self.sampler_ref,
                                              optimizer=self.opt_ref)

        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        # compute the kinetic energy using bf orb
        reset_generator()
        e_bf = self.wf.kinetic_energy_jacobi(self.pos)

        # compute the kinetic energy
        reset_generator()
        e_ref = self.wf_ref.kinetic_energy_jacobi(self.pos)

        print(torch.stack([e_bf, e_ref], axis=1).squeeze())
        assert torch.allclose(e_bf.data, e_ref.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        reset_generator()
        obs = self.solver.single_point()
        e_bf, v_bf = obs.energy, obs.variance

        obs = self.solver.single_point()
        e_bf, v_bf = obs.energy, obs.variance

        # sample and compute observables
        reset_generator()
        obs_ref = self.solver_ref.single_point()
        e_ref, v_ref = obs_ref.energy, obs.variance

        obs_ref = self.solver_ref.single_point()
        e_ref, v_ref = obs_ref.energy, obs.variance

        # compare values
        assert torch.allclose(e_bf.data, e_ref.data, rtol=1E-4, atol=1E-4)

        assert torch.allclose(v_bf.data, v_ref.data, rtol=1E-4, atol=1E-4)

    def test2_wf_opt_grad_auto(self):

        nepoch = 5

        # optimize using backflow
        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        self.solver.configure_resampling(mode='never')

        reset_generator()
        obs = self.solver.run(nepoch)
        e_bf = torch.as_tensor(np.array(obs.energy))

        # optimize using ref
        self.solver_ref.configure(track=['local_energy'],
                                  loss='energy',
                                  grad='auto')
        self.solver_ref.configure_resampling(mode='never')

        reset_generator()
        obs_ref = self.solver_ref.run(nepoch)
        e_ref = torch.as_tensor(np.array(obs_ref.energy))

        assert torch.allclose(e_bf, e_ref, rtol=1E-4, atol=1E-4)

    def test3_wf_opt_grad_manual(self):

        nepoch = 5

        # optimize using backflow
        reset_generator()
        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(nepoch)
        e_bf = torch.as_tensor(np.array(obs.energy))

        # optimize using backflow
        reset_generator()
        self.solver_ref.configure(track=['local_energy', 'parameters'],
                                  loss='energy',
                                  grad='manual')
        obs = self.solver_ref.run(nepoch)
        e_ref = torch.as_tensor(np.array(obs.energy))

        # compare values
        assert torch.allclose(e_bf, e_ref, rtol=1E-4, atol=1E-4)