def reconstruct_model(config):
    ham_matrix = qnnops.ising_hamiltonian(
        n_qubits=config.n_qubits, g=config.g, h=config.h)

    ev_str = re.sub(r' +', r' ', config.eigenvalues.replace('\n', '')).replace(' ', ',')
    try:
        ev = ast.literal_eval(ev_str)
        ground_energy = ev[0]
    except ValueError:
        print(f'Malformed string: {ev_str}')
        print(f'Parse the ground state energy manually.')
        ground_energy = float(ev_str.split(',')[0].lstrip('['))

    def loss_fn(params):
        ansatz_state = qnnops.alternating_layer_ansatz(
            params, config.n_qubits, config.n_qubits, config.n_layers, config.rot_axis)
        return qnnops.energy(ham_matrix, ansatz_state) - ground_energy

    return loss_fn
def main():
    args = get_arguments()
    project = args.project
    n_qubits, g, h = args.n_qubits, 2, 0
    filters = dict(n_qubits=n_qubits, g=g, h=h)
    if args.n_layers_list is not None:
        print(f'Add [n_layers] filter: {args.n_layers_list}')
        filters['n_layers'] = {'$in': args.n_layers_list}
    if args.lr is not None:
        print(f'Add [lr] filter: {args.lr}')
        filters['lr'] = args.lr
    resdir = Path('results_hessian')
    opt_circuits = download_circuits(project, filters, resdir)

    ham_matrix = qnnops.ising_hamiltonian(n_qubits, g, h)

    print('Hessian spectrum')
    hess_fns = {}
    for cfg, fpath in opt_circuits:
        print(f'| computing hessian of {fpath}')
        params = jnp.load(fpath)
        circuit_name = f'Q{n_qubits}-L{cfg["n_layers"]}-R{cfg["rot_axis"]}'
        if circuit_name not in hess_fns:
            loss_fn = get_loss_fn(
                ham_matrix, n_qubits, cfg['n_layers'], cfg['rot_axis'])
            hess_fns[circuit_name] = jax.hessian(loss_fn)
        _, hess_eigvals = compute_hessian_eigenvalues(hess_fns[circuit_name], params)

        name = get_normalized_name(cfg)
        jnp.savez(
            resdir / f'{name}_all.npz',
            params=params,
            ham_matrix=ham_matrix,
            hess_spectrum=hess_eigvals,
        )
        print(f'| ...plotting hessian spectrum and histogram')
        plot_spectrum(hess_eigvals, resdir / f'{name}_spectrum.pdf')
        plot_histogram(hess_eigvals, resdir / f'{name}_histogram.pdf')
예제 #3
0
                    choices=[1, 2],
                    help='qnnops version (Default: 1)')
args = parser.parse_args()

seed = args.seed
n_qubits, max_n_layers, rot_axis = args.n_qubits, args.max_n_layers, args.rot_axis
block_size = args.n_qubits
sample_size = args.sample_size
g, h = args.g, args.h

if not args.exp_name:
    args.exp_name = f'Q{n_qubits}R{rot_axis}BS{block_size} - g{g}h{h} - S{seed} - SN{sample_size}'
expmgr.init(project='IsingBP', name=args.exp_name, config=args)

# Construct the hamiltonian matrix of Ising model.
ham_matrix = qnnops.ising_hamiltonian(n_qubits, g, h)

rng = jax.random.PRNGKey(seed)  # Set of random seeds for parameter sampling

M = int(log2(max_n_layers))
for i in range(1, M + 1):
    n_layers = 2**i
    print(f'{n_qubits} Qubits & {n_layers} Layers ({i}/{M})')

    def loss(_params):
        ansatz_state = qnnops.alternating_layer_ansatz(_params, n_qubits,
                                                       block_size, n_layers,
                                                       rot_axis)
        return qnnops.energy(ham_matrix, ansatz_state)

    grad_fn = jax.grad(loss)
예제 #4
0
def main():
    parser = argparse.ArgumentParser('Mode Connectivity')
    parser.add_argument('--n-qubits',
                        type=int,
                        metavar='N',
                        required=True,
                        help='Number of qubits')
    parser.add_argument('--n-layers',
                        type=int,
                        metavar='N',
                        required=True,
                        help='Number of alternating layers')
    parser.add_argument('--rot-axis',
                        type=str,
                        metavar='R',
                        required=True,
                        choices=['x', 'y', 'z'],
                        help='Direction of rotation gates.')
    parser.add_argument('--g',
                        type=float,
                        metavar='M',
                        required=True,
                        help='Transverse magnetic field')
    parser.add_argument('--h',
                        type=float,
                        metavar='M',
                        required=True,
                        help='Longitudinal magnetic field')
    parser.add_argument('--n-bends',
                        type=int,
                        metavar='N',
                        default=3,
                        help='Number of bends between endpoints')
    parser.add_argument('--train-steps',
                        type=int,
                        metavar='N',
                        default=int(1e3),
                        help='Number of training steps. (Default: 1000)')
    parser.add_argument('--batch-size',
                        type=int,
                        metavar='N',
                        default=8,
                        help='Batch size. (Default: 8)')
    parser.add_argument('--lr',
                        type=float,
                        metavar='LR',
                        default=0.05,
                        help='Initial value of learning rate. (Default: 0.05)')
    parser.add_argument('--log-every',
                        type=int,
                        metavar='N',
                        default=1,
                        help='Logging every N steps. (Default: 1)')
    parser.add_argument(
        '--seed',
        type=int,
        metavar='N',
        required=True,
        help='Random seed. For reproducibility, the value is set explicitly.')
    parser.add_argument('--model-seeds',
                        type=int,
                        metavar='N',
                        nargs=2,
                        required=True,
                        help='Random seed used for model training.')
    parser.add_argument('--exp-name',
                        type=str,
                        metavar='NAME',
                        default=None,
                        help='Experiment name.')
    parser.add_argument(
        '--scheduler-name',
        type=str,
        metavar='NAME',
        default='exponential_decay',
        help=f'Scheduler name. Supports: {qnnops.supported_schedulers()} '
        f'(Default: constant)')
    parser.add_argument(
        '--params-start',
        type=str,
        metavar='PATH',
        help='A file path of a checkpoint where the curve starts from')
    parser.add_argument(
        '--params-end',
        type=str,
        metavar='PATH',
        help='A file path of a checkpoint where the curve ends')
    parser.add_argument('--no-jit',
                        dest='use_jit',
                        action='store_false',
                        help='Disable jit option to loss function.')
    parser.add_argument('--no-time-tag',
                        dest='time_tag',
                        action='store_false',
                        help='Omit the time tag from experiment name.')
    parser.add_argument('--quiet',
                        action='store_true',
                        help='Quite mode (No training logs)')
    args = parser.parse_args()

    n_qubits, n_layers = args.n_qubits, args.n_layers
    if args.exp_name is None:
        args.exp_name = f'Q{n_qubits}L{n_layers}_nB{args.n_bends}'

    if args.model_seeds is None:
        params_start, params_end = args.params_start, args.params_end
    else:
        params_start, params_end = download_checkpoints(
            'checkpoints',
            n_qubits=n_qubits,
            n_layers=n_layers,
            lr=0.05,  # fixed lr that we used in training
            seed={'$in': args.model_seeds})

    print('Initializing project')
    expmgr.init('ModeConnectivity', args.exp_name, args)

    print('Loading pretrained models')
    w1 = jnp.load(params_start)
    w2 = jnp.load(params_end)
    expmgr.save_array('endpoint_begin.npy', w1)
    expmgr.save_array('endpoint_end.npy', w2)

    print('Constructing Hamiltonian matrix')
    ham_matrix = qnnops.ising_hamiltonian(n_qubits=n_qubits,
                                          g=args.g,
                                          h=args.h)

    print('Define the loss function')

    def loss_fn(params):
        ansatz_state = qnnops.alternating_layer_ansatz(params, n_qubits,
                                                       n_qubits, n_layers,
                                                       args.rot_axis)
        return qnnops.energy(ham_matrix, ansatz_state)

    find_connected_curve(w1,
                         w2,
                         loss_fn,
                         n_bends=args.n_bends,
                         train_steps=args.train_steps,
                         lr=args.lr,
                         scheduler_name=args.scheduler_name,
                         batch_size=args.batch_size,
                         log_every=1,
                         seed=args.seed,
                         use_jit=args.use_jit)