MAX_PARAM_NORMS = (
    MAX_AMP_C,
    MAX_AMP_T,
)
OPTIMIZER = Adam()
PULSE_TIME = 500
PULSE_STEP_COUNT = 500
ITERATION_COUNT = 5000

# Define the problem.
INITIAL_STATE_0 = np.kron(CAVITY_ZERO, TRANSMON_G)
TARGET_STATE_0 = np.kron(CAVITY_ONE, TRANSMON_G)
INITIAL_STATES = np.stack((INITIAL_STATE_0, ), )
TARGET_STATES = np.stack((TARGET_STATE_0, ), )
COSTS = (TargetInfidelity(TARGET_STATES),
         ParamVariation(MAX_PARAM_NORMS, PARAM_COUNT, PULSE_STEP_COUNT))

# Define the output.
LOG_ITERATION_STEP = 1
SAVE_ITERATION_STEP = 1
SAVE_FILE_NAME = "binomialcode_exp2_3"
SAVE_PATH = os.path.join(
    "./pulses/",
    SAVE_FILE_NAME,
)


def main():
    result = grape_schroedinger_discrete(
        COSTS,
        hamiltonian,
예제 #2
0
# Define the optimization.
ITERATION_COUNT = 5000
OPTIMIZER = Adam()
PARAM_COUNT = 3
PULSE_TIME = 500
PULSE_STEP_COUNT = PULSE_TIME

# Define the problem.
INITIAL_STATE_0 = anp.kron(TRANSMON_G, CAVITY_ZERO)
INITIAL_STATES = anp.stack((INITIAL_STATE_0,))
TARGET_STATE_0 = anp.kron(TRANSMON_G, CAVITY_ONE)
TARGET_STATES = anp.stack((TARGET_STATE_0,))
COSTS = (TargetInfidelity(TARGET_STATES),
         ParamVariation(MAX_PARAM_NORMS,
                        PARAM_COUNT,
                        PULSE_STEP_COUNT,
                        cost_multiplier=0.5,
                        order=1),
         ParamVariation(MAX_PARAM_NORMS,
                        PARAM_COUNT,
                        PULSE_STEP_COUNT,
                        cost_multiplier=0.5,
                        order=2),)

# Define the output.
LOG_ITERATION_STEP = 1
SAVE_FILE_NAME = "piccolo_exp1"
SAVE_ITERATION_STEP = 1
SAVE_PATH = os.path.join("./pulses/", SAVE_FILE_NAME,)