def main(_): running_environment.ForceCpuForTheRun() retro.data.merge('../../roms/contraforce.nes', quiet=False) env = retro.make(game='ContraForce-Nes') pipeline = shortcut.ScreenLearningPipeline( gym_env_name='ContraForce', gym_env=env) pipeline.Demo()
def main(_): running_environment.ForceCpuForTheRun() pipeline = shortcut.ScreenLearningPipeline( gym_env_name='MsPacman-v0', use_ddqn=False, use_large_model=True, ) pipeline.LoadWeights() pipeline.Demo()
def main(_): running_environment.ForceCpuForTheRun() env = environment_impl.GymEnvironment(gym.make('CartPole-v0')) brain = a3c_impl.A3C(model=a3c_impl.CreateModel( state_shape=env.GetStateShape(), action_space_size=env.GetActionSpaceSize(), hidden_layer_sizes=(12, ), )) policy = policy_impl.PolicyWithDecreasingRandomness( base_policy=policy_impl.PiWeightedPolicy(), initial_epsilon=0.4, final_epsilon=0.05, decay_by_half_after_num_of_episodes=500, ) runner = a3c_impl.NStepExperienceRunner() # runner = runner_impl.SimpleRunner() runner.AddCallback( runner_extension_impl.ProgressTracer(report_every_num_of_episodes=100)) runner.Run(env=env, brain=brain, policy=policy, num_of_episodes=1200)
"""Demo using A3C to solve CartPole-v0.""" import gym from deep_learning.engine import a3c_impl from deep_learning.engine import environment_impl from deep_learning.engine import policy_impl from deep_learning.engine import runner_extension_impl from qpylib import running_environment running_environment.ForceCpuForTheRun() from absl import app # Profiler instruction: # 1) Generate profiler file: # $ python -m cProfile -o result.prof deep_learning/examples/solve_cartpole_a3c.py # 2) Visualize it: # $ snakeviz result.prof # It prints a link that shows the viz. def main(_): running_environment.ForceCpuForTheRun() env = environment_impl.GymEnvironment(gym.make('CartPole-v0')) brain = a3c_impl.A3C(model=a3c_impl.CreateModel( state_shape=env.GetStateShape(), action_space_size=env.GetActionSpaceSize(), hidden_layer_sizes=(12, ), ))
def main(_): running_environment.ForceCpuForTheRun() print(gym_super_mario_bros.__doc__) pipeline = shortcut.ScreenLearningPipeline( gym_env_name='SuperMarioBros-v0') pipeline.Demo()