예제 #1
0
'''
R-Squared coefficient of determination
    R**2 = 1 - SSres/SStot
'''
def r_squared(series: pd.Series, predicted_values: pd.Series)->np.float64:
    ss_res_series = ss_res(series, predicted_values)
    ss_tot_series = ss_tot(series)
    r_squared = 1 - (ss_res_series/ss_tot_series)
    return r_squared


if __name__ == '__main__':
    # load data
    ticker = 'HECP'
    series = load_sample_data(ticker)
    close_price = series.iloc[-30:, 1]
    print('Symbol: ', ticker)

    print('naive prediction--')
    predicted_values = series.iloc[-30:, 1].shift(1)
    r2 = r_squared(close_price, predicted_values).round(3)
    print('R squared: ', r2)

    exp_range = ExponentialRange(4, 8, 1/4)
    test_columns = ['date', 'open', 'close', 'low', 'high', 'volume']
    test_df = pd.DataFrame(
        np.random.rand(exp_range.max, 6),
        columns=test_columns,
        index=pd.date_range('01-01-1900', periods=exp_range.max, freq=pd.Timedelta(seconds=10))
    )
예제 #2
0
    axs[0].grid(True)

    axs[1].set_title(ticker+' RSI')
    axs[1].xaxis.set_major_locator(locator)
    axs[1].xaxis.set_major_formatter(formatter)
    axs[1].set_ylim(0, 100)
    axs[1].plot(dataframe[['rsi']], c='k', lw=1.5, ls='dotted', label="RSI")
    axs[1].set_xlabel('Date')
    axs[1].set_ylabel('rsi')
    axs[1].legend(loc='lower right')
    axs[1].grid(True)

    plt.show()


if __name__ == '__main__':
    ticker = 'HRVC'
    dataframe = load_sample_data(ticker)

    window = 30

    rsi = compute_rsi(dataframe, window)
    to_plot = dataframe.copy()
    compute_bb(to_plot)

    x = -window                  # define the date range for plot to plot
    to_plot = to_plot.iloc[x:]
    to_plot['rsi'] = rsi[x:]
    _plot(ticker, to_plot)
    exit
예제 #3
0
# Indicators module contains core qttk functionality
from qttk.indicators import compute_rsi

# qttk is 'batteries included' with simulated data
from qttk.utils.sample_data import load_sample_data

# Load a ticker from csv into dataframe
df = load_sample_data('AWU')

print(df.head())

rsi = compute_rsi(df)

print(rsi[-10:])
예제 #4
0
    # Multiply sign by the boolean.  This will cast the boolean to an integer
    #   either 1 or 0 and then multiply by the sign either (-1, 0, 1).
    return macd_sign * (macd_sign != macd_shifted_sign)


if __name__ == '__main__':
    required_ohlcv_columns = pd.Series(
        ['open', 'high', 'low', 'close', 'volume'])
    # removed date as a required column because it is set as the dataframe index
    # when the csv is read
    # required_ohlcv_columns = pd.Series(['date', 'open', 'high', 'low', 'close', 'volume'])
    data = 'AWU.csv'  # name of data file to use
    demo_macd(required_columns=required_ohlcv_columns)

    # optional loop
    # script_dir = os.path.dirname(__file__)
    # csv_files = os.path.join(script_dir, 'data', 'eod', '*.csv')
    # for csv_file in glob.glob(csv_files):
    #    main(csv_file)

    # try signal

    from qttk.utils.sample_data import load_sample_data
    csv_file = load_sample_data('AWU')
    macd = compute_macd(csv_file)
    macd_signal = create_macd_signal(macd['MACD'])
    macd_signal = macd_signal.iloc[-180:]
    macd_signal.plot()
    plt.show()
예제 #5
0
                        right=0.989,
                        hspace=0.918,
                        wspace=0.2)

    axs[0].set_title = 'Close Prices: {ticker}'.format(ticker=ticker)
    axs[0].plot(close_price.loc[close_price.index > cutoff])

    axs[1].set_title = f'Chaikin Money Flow: {ticker}'
    axs[1].plot(cmf.loc[chaikin_money_flow.index > cutoff])

    axs[2].set_title = f'Signal: {ticker}'
    axs[2].plot(cmf_signal.loc[signal.index > cutoff])
    return fig, axs


if __name__ == '__main__':
    ticker = 'AWU'
    demo_plot = True

    if sys.argv[1:]:
        demo_plot = False

    demo_df = load_sample_data(ticker)

    cmf = calculate_chaikin_money_flow(demo_df)
    cmf_signal = calculate_chaikin_money_flow_signal(cmf)

    if demo_plot:
        fig, axs = _format_chaikin_plot(demo_df.close, cmf, cmf_signal, ticker)

        plt.show(block=False)