예제 #1
0
    def test_vaidate_targets(self):
        data = pd.read_csv(self.path_data_exA)
        engine = WeightEngine(data)

        targets_gender = [45.6, 54.4]
        targets_locality = [10, 15, 20, 25, 30]
        weight_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate(targets_gender, start=1)}
        }, {
            'locality': {
                code: prop
                for code, prop in enumerate(targets_locality, start=1)
            }
        }]

        scheme = Rim('missing_data')
        scheme.set_targets(weight_targets)
        engine.add_scheme(scheme, key='unique_id', verbose=False)

        validate_df = scheme.validate()
        self.assertTrue(validate_df.columns.tolist() ==
                        ['missing', 'mean', 'mode', 'median'])
        self.assertTrue(validate_df.index.tolist() == ['gender', 'locality'])
        self.assertTrue(validate_df.values.tolist() ==
                        [[0.0, 2.0, 2.0, 2.0], [177.0, 2.0, 1.0, 2.0]])
예제 #2
0
    def test_wdf_structure(self):
        data = pd.read_csv(self.path_data_exA)
        engine = WeightEngine(data)

        targets_gender = [45.6, 54.4]
        targets_locality = [10, 15, 20, 25, 30]
        weight_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate(targets_gender, start=1)}
        }, {
            'locality': {
                code: prop
                for code, prop in enumerate(targets_locality, start=1)
            }
        }]

        scheme = Rim('complex_filter')

        scheme.add_group(name='W1, male',
                         filter_def='Wave==1 & religion==1',
                         targets=weight_targets)
        scheme.add_group(name='W2, female',
                         filter_def='Wave==2 & religion==2',
                         targets=weight_targets)

        engine.add_scheme(scheme, key='unique_id', verbose=False)
        engine.run()

        wdf = engine.dataframe('complex_filter')

        self.assertEqual(
            sorted(wdf.columns.tolist()),
            sorted([
                'unique_id', 'gender', 'locality', 'weights_complex_filter',
                'Wave', 'religion'
            ]))
        self.assertTrue(len(wdf.index) == 596)
예제 #3
0
    def setUp(self):
        ''' Simple engine without meta - engine_A
        '''
        self.path = './tests/'
        #         self.path = ''

        name_data_A = 'engine_A'
        self.path_data_A = '{}{}_data.csv'.format(self.path, name_data_A)

        name_data_B = 'engine_B'
        self.path_meta_B = '{}{}_meta.json'.format(self.path, name_data_B)
        self.path_data_B = '{}{}_data.csv'.format(self.path, name_data_B)

        name_data_exA = 'Example Data (A)'
        self.path_meta_exA = '{}{}.json'.format(self.path, name_data_exA)
        self.path_data_exA = '{}{}.csv'.format(self.path, name_data_exA)

        # Setup engine_A
        data = pd.read_csv(self.path_data_A)
        self.engine_A = WeightEngine(data=data)

        self.scheme_name_A1 = 'scheme_name_A1'
        self.scheme_name_A2 = 'scheme_name_A2'
        self.scheme_name_A3 = 'scheme_name_A3'

        # Setup schemes to use in tests
        self.scheme_A1 = Rim(self.scheme_name_A1)
        self.scheme_A1.target_cols = ['column1', 'column2']
        self.scheme_A1.add_group(
            name='Senior Type 1',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([32.00, 31.00, 37.00], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04, 13.3
                    ],
                                                start=1)
                }
            }])
        self.scheme_A1.add_group(
            name='Senior Type 2',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.40, 33.40, 33.20], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11,
                        11.12
                    ],
                                                start=1)
                }
            }])
        self.scheme_A1.add_group(
            name='Senior Type 3',
            filter_def='column3==3',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.2, 29.7, 37.1], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04, 13.3
                    ],
                                                start=1)
                }
            }])
        self.scheme_A1.add_group(
            name='Senior Type 4',
            filter_def='column3==4',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.2, 29.7, 37.1], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 32.34,
                        12.00
                    ],
                                                start=1)
                }
            }])

        self.scheme_A2 = Rim(self.scheme_name_A2)
        self.scheme_A2.target_cols = ['column1', 'column2']
        self.scheme_A2.add_group(
            name='Senior Type 1',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([37.00, 32.00, 31.00], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        13.3, 23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04
                    ],
                                                start=1)
                }
            }])
        self.scheme_A2.add_group(
            name='Senior Type 2',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.2, 33.40, 33.40], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11,
                        11.12
                    ],
                                                start=1)
                }
            }])
        self.scheme_A2.add_group(
            name='Senior Type 3',
            filter_def='column3==3',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([37.1, 33.2, 29.7], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        13.3, 23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04
                    ],
                                                start=1)
                }
            }])
        self.scheme_A2.add_group(
            name='Senior Type 4',
            filter_def='column3==4',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([37.1, 33.2, 29.7], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        12.00, 23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47,
                        32.34
                    ],
                                                start=1)
                }
            }])

        self.scheme_A3 = Rim(self.scheme_name_A3)
        self.scheme_A3.target_cols = ['profile_gender']
        self.scheme_A3.targets = [{'profile_gender': {1: 47, 2: 53}}]
        self.scheme_A3.add_group(name='11-19',
                                 filter_def='age_group==2',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.add_group(name='31-39',
                                 filter_def='age_group==4',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.add_group(name='41-49',
                                 filter_def='age_group==5',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.add_group(name='51-59',
                                 filter_def='age_group==6',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.group_targets({
            '11-19': 25,
            '31-39': 25,
            '41-49': 25,
            '51-59': 25
        })
        ''' Complex engine with meta - engine_B
        '''
        data = pd.read_csv(self.path_data_B)
        meta = json.load(open(self.path_meta_B))

        self.scheme_name_B1 = 'scheme_name_B1'

        engine_B = WeightEngine(data=data, meta=meta)

        # Setup schemes to use in tests
        self.scheme_B1 = Rim(self.scheme_name_B1)
        self.scheme_B1.target_cols = ['profile_gender', 'age_group']
예제 #4
0
class TestEngine(unittest.TestCase):
    def setUp(self):
        ''' Simple engine without meta - engine_A
        '''
        self.path = './tests/'
        #         self.path = ''

        name_data_A = 'engine_A'
        self.path_data_A = '{}{}_data.csv'.format(self.path, name_data_A)

        name_data_B = 'engine_B'
        self.path_meta_B = '{}{}_meta.json'.format(self.path, name_data_B)
        self.path_data_B = '{}{}_data.csv'.format(self.path, name_data_B)

        name_data_exA = 'Example Data (A)'
        self.path_meta_exA = '{}{}.json'.format(self.path, name_data_exA)
        self.path_data_exA = '{}{}.csv'.format(self.path, name_data_exA)

        # Setup engine_A
        data = pd.read_csv(self.path_data_A)
        self.engine_A = WeightEngine(data=data)

        self.scheme_name_A1 = 'scheme_name_A1'
        self.scheme_name_A2 = 'scheme_name_A2'
        self.scheme_name_A3 = 'scheme_name_A3'

        # Setup schemes to use in tests
        self.scheme_A1 = Rim(self.scheme_name_A1)
        self.scheme_A1.target_cols = ['column1', 'column2']
        self.scheme_A1.add_group(
            name='Senior Type 1',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([32.00, 31.00, 37.00], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04, 13.3
                    ],
                                                start=1)
                }
            }])
        self.scheme_A1.add_group(
            name='Senior Type 2',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.40, 33.40, 33.20], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11,
                        11.12
                    ],
                                                start=1)
                }
            }])
        self.scheme_A1.add_group(
            name='Senior Type 3',
            filter_def='column3==3',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.2, 29.7, 37.1], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04, 13.3
                    ],
                                                start=1)
                }
            }])
        self.scheme_A1.add_group(
            name='Senior Type 4',
            filter_def='column3==4',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.2, 29.7, 37.1], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 32.34,
                        12.00
                    ],
                                                start=1)
                }
            }])

        self.scheme_A2 = Rim(self.scheme_name_A2)
        self.scheme_A2.target_cols = ['column1', 'column2']
        self.scheme_A2.add_group(
            name='Senior Type 1',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([37.00, 32.00, 31.00], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        13.3, 23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04
                    ],
                                                start=1)
                }
            }])
        self.scheme_A2.add_group(
            name='Senior Type 2',
            filter_def='column3==1',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([33.2, 33.40, 33.40], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11, 11.11,
                        11.12
                    ],
                                                start=1)
                }
            }])
        self.scheme_A2.add_group(
            name='Senior Type 3',
            filter_def='column3==3',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([37.1, 33.2, 29.7], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        13.3, 23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47, 31.04
                    ],
                                                start=1)
                }
            }])
        self.scheme_A2.add_group(
            name='Senior Type 4',
            filter_def='column3==4',
            targets=[{
                'column1': {
                    code: prop
                    for code, prop in enumerate([37.1, 33.2, 29.7], start=1)
                }
            }, {
                'column2': {
                    code: prop
                    for code, prop in enumerate([
                        12.00, 23.13, 14.32, 4.78, 4.70, 2.65, 2.61, 3.47,
                        32.34
                    ],
                                                start=1)
                }
            }])

        self.scheme_A3 = Rim(self.scheme_name_A3)
        self.scheme_A3.target_cols = ['profile_gender']
        self.scheme_A3.targets = [{'profile_gender': {1: 47, 2: 53}}]
        self.scheme_A3.add_group(name='11-19',
                                 filter_def='age_group==2',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.add_group(name='31-39',
                                 filter_def='age_group==4',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.add_group(name='41-49',
                                 filter_def='age_group==5',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.add_group(name='51-59',
                                 filter_def='age_group==6',
                                 targets=self.scheme_A3.targets)
        self.scheme_A3.group_targets({
            '11-19': 25,
            '31-39': 25,
            '41-49': 25,
            '51-59': 25
        })
        ''' Complex engine with meta - engine_B
        '''
        data = pd.read_csv(self.path_data_B)
        meta = json.load(open(self.path_meta_B))

        self.scheme_name_B1 = 'scheme_name_B1'

        engine_B = WeightEngine(data=data, meta=meta)

        # Setup schemes to use in tests
        self.scheme_B1 = Rim(self.scheme_name_B1)
        self.scheme_B1.target_cols = ['profile_gender', 'age_group']
        # self.scheme_B1.set_targets()

    def test_constructor(self):
        data = pd.read_csv(self.path_data_B)
        meta = json.load(open(self.path_meta_B))

        engine_B = WeightEngine(data=data, meta=meta)

        self.assertIsNotNone(engine_B._df)
        self.assertTrue(engine_B.dropna)
        self.assertEqual(engine_B.schemes, {})
        self.assertIsInstance(engine_B.schemes, dict)

    def test_add_scheme_and_dataframe(self):
        #A list of scheme names used in setUp used for comparison
        scheme_names = [self.scheme_name_A1, self.scheme_name_A2]

        self.engine_A.add_scheme(scheme=self.scheme_A2,
                                 key='identity',
                                 verbose=False)
        # Should now contain a dict with scheme_name_A2 as the first key
        self.assertEqual(self.engine_A.schemes.keys()[0], self.scheme_name_A2)

        self.engine_A.add_scheme(scheme=self.scheme_A1,
                                 key='identity',
                                 verbose=False)
        # Should now contain a dict with scheme_name_A2 and scheme_name_A1 as keys
        for key in self.engine_A.schemes:
            self.assertIn(key, scheme_names)
            self.assertIn('identity', self.engine_A.schemes[key]['key'])

        # Sets weights_scheme_name_A1 and weights_scheme_name_A2 to ones
        self.engine_A._df[self.scheme_A1._weight_name()] = pd.np.ones(
            len(self.engine_A._df))
        self.engine_A._df[self.scheme_A2._weight_name()] = pd.np.ones(
            len(self.engine_A._df))

        for key in self.engine_A.schemes:
            weight_scheme = self.engine_A._df['weights_' + key]
            boolean_vector = (weight_scheme == pd.np.ones(len(weight_scheme)))
            self.assertTrue(boolean_vector.all())
            self.engine_A.run(schemes=[key])
            boolean_vector = (weight_scheme == pd.np.ones(len(weight_scheme)))
            self.assertFalse(boolean_vector.all())

    def test_add_scheme_no_key(self):
        self.engine_A.add_scheme(scheme=self.scheme_A1,
                                 key='identity',
                                 verbose=False)
        self.assertIsNotNone(self.engine_A.schemes[self.scheme_name_A1]['key'])

    def test_weight_lazy(self):
        return
        self.engine_A.add_scheme(scheme=self.scheme_A2,
                                 key='identity',
                                 verbose=False)
        self.engine_A.add_scheme(scheme=self.scheme_A1,
                                 key='identity',
                                 verbose=False)
        self.assertNotIn('weights_scheme_name_A2', self.engine_A._df.columns)
        self.engine_A.weight()

        self.assertIn('weights_%s' % self.scheme_name_A1,
                      self.engine_A._df.columns)
        self.assertIn('weights_%s' % self.scheme_name_A2,
                      self.engine_A._df.columns)

    def test_group_targets(self):
        data = pd.read_csv(self.path_data_B)
        meta = json.load(open(self.path_meta_B))

        weight = '_'.join(['weights', self.scheme_name_A3])

        # Run weights for scheme_A3
        engine_B = WeightEngine(data=data, meta=meta)
        engine_B.add_scheme(scheme=self.scheme_A3,
                            key='identity',
                            verbose=False)
        engine_B.run()

        data_A3 = engine_B.dataframe("scheme_name_A3")

        # check identical weighted column frequencies
        df = data_A3.pivot_table(values=[weight],
                                 index=['profile_gender'],
                                 columns=['age_group'],
                                 aggfunc='sum')

        for column in df.columns.tolist():
            self.assertTrue(
                numpy.allclose(df[column].values, numpy.array([1.645, 1.855])))

        # check weighted group frequencies have equal proportions
        values = data_A3.pivot_table(values=[weight],
                                     index=['age_group'],
                                     aggfunc='sum').values
        self.assertTrue(numpy.allclose(values, 3.5))

    def test_vaidate_targets(self):
        data = pd.read_csv(self.path_data_exA)
        engine = WeightEngine(data)

        targets_gender = [45.6, 54.4]
        targets_locality = [10, 15, 20, 25, 30]
        weight_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate(targets_gender, start=1)}
        }, {
            'locality': {
                code: prop
                for code, prop in enumerate(targets_locality, start=1)
            }
        }]

        scheme = Rim('missing_data')
        scheme.set_targets(weight_targets)
        engine.add_scheme(scheme, key='unique_id', verbose=False)

        validate_df = scheme.validate()
        self.assertTrue(validate_df.columns.tolist() ==
                        ['missing', 'mean', 'mode', 'median'])
        self.assertTrue(validate_df.index.tolist() == ['gender', 'locality'])
        self.assertTrue(validate_df.values.tolist() ==
                        [[0.0, 2.0, 2.0, 2.0], [177.0, 2.0, 1.0, 2.0]])

    def test_wdf_structure(self):
        data = pd.read_csv(self.path_data_exA)
        engine = WeightEngine(data)

        targets_gender = [45.6, 54.4]
        targets_locality = [10, 15, 20, 25, 30]
        weight_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate(targets_gender, start=1)}
        }, {
            'locality': {
                code: prop
                for code, prop in enumerate(targets_locality, start=1)
            }
        }]

        scheme = Rim('complex_filter')

        scheme.add_group(name='W1, male',
                         filter_def='Wave==1 & religion==1',
                         targets=weight_targets)
        scheme.add_group(name='W2, female',
                         filter_def='Wave==2 & religion==2',
                         targets=weight_targets)

        engine.add_scheme(scheme, key='unique_id', verbose=False)
        engine.run()

        wdf = engine.dataframe('complex_filter')

        self.assertTrue(wdf.columns.tolist() == [
            'unique_id', 'gender', 'locality', 'weights_complex_filter',
            'religion', 'Wave'
        ])
        self.assertTrue(len(wdf.index) == 596)
예제 #5
0
class TestScheme(unittest.TestCase):
    def setUp(self):
        self.analog_scheme = Rim('analog')

    def test_constructor(self):
        #Check to see if everything initialised correctly
        self.assertIsInstance(self.analog_scheme, Rim)
        self.assertEqual(self.analog_scheme.name, 'analog')
        self.assertEqual(self.analog_scheme.max_iterations, 1000)
        self.assertEqual(self.analog_scheme.convcrit, 0.01)
        self.assertEqual(self.analog_scheme.cap, 0)
        self.assertTrue(self.analog_scheme.dropna)
        self.assertIsInstance(self.analog_scheme._specific_impute, dict)
        self.assertIsNone(self.analog_scheme.weight_column_name)
        self.assertEqual(self.analog_scheme.total, 0)

    def test_cap(self):
        # Test the cap functionality
        self.assertEqual(0, self.analog_scheme.cap)
        self.assertFalse(self.analog_scheme._use_cap())

        self.analog_scheme.cap = 5
        self.assertEqual(5, self.analog_scheme.cap)
        self.assertTrue(self.analog_scheme._use_cap())

        #Check to see if it reverts properly to not using cap
        self.analog_scheme.cap = 0
        self.assertFalse(self.analog_scheme._use_cap())

    def test_groups(self):
        scheme = Rim('digital')
        self.assertIsInstance(scheme.groups, dict)
        self.assertIsNone(scheme.groups['_default_name_']['report'])
        self.assertIsNone(scheme.groups['_default_name_']['filters'])

        scheme.lists = [
            'gender', 'column1c', 'q06', 'sta_wo', 'abschluss', 'q04'
        ]

        scheme.add_group(name='Apple', filter_def='ownership==1')
        self.assertIn('Apple', scheme.groups)
        scheme.add_group(name='Samsung', filter_def='ownership==2')
        self.assertIn('Samsung', scheme.groups)

        # Check to see if the available methods to add filter are equal
        self.assertEqual(scheme.groups['Samsung']['filters'], 'ownership==2')
        self.assertEqual(scheme.groups['Apple']['filters'], 'ownership==1')

        #The targets should be empty lists
        for key in scheme.groups['Apple']['targets']:
            self.assertEqual(scheme.groups['Apple']['targets'][key], [])

        #Test for incorrect target change
        #with self.assertRaises(ValueError):
        scheme.set_targets(group_name='Apple',
                           targets=[{
                               'gender': {
                                   1: 1234,
                                   2: 200
                               }
                           }])

        #Set valid targets
        valid_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate([50, 50], start=1)}
        }, {
            'column1c': {
                code: prop
                for code, prop in enumerate([20, 18, 25, 21, 16], start=1)
            }
        }, {
            'q04': {
                code: prop
                for code, prop in enumerate([20, 55, 12.5, 12.5], start=1)
            }
        }, {
            'sta_wo':
            {code: prop
             for code, prop in enumerate([50, 50], start=1)}
        }, {
            'abschluss':
            {code: prop
             for code, prop in enumerate([60, 40], start=1)}
        }, {
            'q06': {
                code: prop
                for code, prop in enumerate([20, 20, 20, 20, 20], start=1)
            }
        }]

        scheme.set_targets(group_name='Apple', targets=valid_targets)

        #add group_targets
        scheme.group_targets({"Apple": 30, "Samsung": 40, "Motorola": 30})

        self.assertItemsEqual(scheme._group_targets.keys(),
                              ['Motorola', 'Apple', 'Samsung'])
        self.assertItemsEqual(scheme._group_targets.values(), [0.3, 0.3, 0.4])
예제 #6
0
    def test_groups(self):
        scheme = Rim('digital')
        self.assertIsInstance(scheme.groups, dict)
        self.assertIsNone(scheme.groups['_default_name_']['report'])
        self.assertIsNone(scheme.groups['_default_name_']['filters'])

        scheme.lists = [
            'gender', 'column1c', 'q06', 'sta_wo', 'abschluss', 'q04'
        ]

        scheme.add_group(name='Apple', filter_def='ownership==1')
        self.assertIn('Apple', scheme.groups)
        scheme.add_group(name='Samsung', filter_def='ownership==2')
        self.assertIn('Samsung', scheme.groups)

        # Check to see if the available methods to add filter are equal
        self.assertEqual(scheme.groups['Samsung']['filters'], 'ownership==2')
        self.assertEqual(scheme.groups['Apple']['filters'], 'ownership==1')

        #The targets should be empty lists
        for key in scheme.groups['Apple']['targets']:
            self.assertEqual(scheme.groups['Apple']['targets'][key], [])

        #Test for incorrect target change
        #with self.assertRaises(ValueError):
        scheme.set_targets(group_name='Apple',
                           targets=[{
                               'gender': {
                                   1: 1234,
                                   2: 200
                               }
                           }])

        #Set valid targets
        valid_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate([50, 50], start=1)}
        }, {
            'column1c': {
                code: prop
                for code, prop in enumerate([20, 18, 25, 21, 16], start=1)
            }
        }, {
            'q04': {
                code: prop
                for code, prop in enumerate([20, 55, 12.5, 12.5], start=1)
            }
        }, {
            'sta_wo':
            {code: prop
             for code, prop in enumerate([50, 50], start=1)}
        }, {
            'abschluss':
            {code: prop
             for code, prop in enumerate([60, 40], start=1)}
        }, {
            'q06': {
                code: prop
                for code, prop in enumerate([20, 20, 20, 20, 20], start=1)
            }
        }]

        scheme.set_targets(group_name='Apple', targets=valid_targets)

        #add group_targets
        scheme.group_targets({"Apple": 30, "Samsung": 40, "Motorola": 30})

        self.assertItemsEqual(scheme._group_targets.keys(),
                              ['Motorola', 'Apple', 'Samsung'])
        self.assertItemsEqual(scheme._group_targets.values(), [0.3, 0.3, 0.4])
예제 #7
0
 def setUp(self):
     self.analog_scheme = Rim('analog')